July  2008, 10(1): 43-72. doi: 10.3934/dcdsb.2008.10.43

On the stopping time of a bouncing ball

1. 

Dipartimento di Matematica E. De Giorgi, Università del Salento, 73100, Lecce, Italy, Italy

2. 

Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, 73100, Lecce, Italy

Received  June 2007 Revised  January 2008 Published  April 2008

We study a simple model of a bouncing ball that takes explicitely into account the elastic deformability of the body and the energy dissipation due to internal friction. We show that this model is not subject to the problem of inelastic collapse, that is, it does not allow an infinite number of impacts in a finite time. We compute asymptotic expressions for the time of flight and for the impact velocity. We also prove that contacts with zero velocity of the lower end of the ball are possible, but non-generic. Finally, we compare our findings with other models and laboratory experiments.
Citation: Anna Maria Cherubini, Giorgio Metafune, Francesco Paparella. On the stopping time of a bouncing ball. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 43-72. doi: 10.3934/dcdsb.2008.10.43
[1]

Ming Gao, Jonathan J. Wylie, Qiang Zhang. Inelastic Collapse in a Corner. Communications on Pure and Applied Analysis, 2009, 8 (1) : 275-293. doi: 10.3934/cpaa.2009.8.275

[2]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic and Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[3]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic and Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[4]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic and Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[5]

Daxiong Piao, Xiang Sun. Boundedness of solutions for a class of impact oscillators with time-denpendent polynomial potentials. Communications on Pure and Applied Analysis, 2014, 13 (2) : 645-655. doi: 10.3934/cpaa.2014.13.645

[6]

Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2305-2328. doi: 10.3934/dcds.2016.36.2305

[7]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[8]

Da-Peng Li. Phase transition of oscillators and travelling waves in a class of relaxation systems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2601-2614. doi: 10.3934/dcdsb.2016063

[9]

Ming He, Xiaoyun Ma, Weijiang Zhang. Oscillation death in systems of oscillators with transferable coupling and time-delay. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 737-745. doi: 10.3934/dcds.2001.7.737

[10]

Wolf-Jürgen Beyn, Thorsten Hüls. Continuation and collapse of homoclinic tangles. Journal of Computational Dynamics, 2014, 1 (1) : 71-109. doi: 10.3934/jcd.2014.1.71

[11]

El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449

[12]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[13]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[14]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[15]

John Erik Fornæss. Sustainable dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1361-1386. doi: 10.3934/dcds.2003.9.1361

[16]

Vieri Benci, C. Bonanno, Stefano Galatolo, G. Menconi, M. Virgilio. Dynamical systems and computable information. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 935-960. doi: 10.3934/dcdsb.2004.4.935

[17]

Mădălina Roxana Buneci. Morphisms of discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 91-107. doi: 10.3934/dcds.2011.29.91

[18]

Josiney A. Souza, Tiago A. Pacifico, Hélio V. M. Tozatti. A note on parallelizable dynamical systems. Electronic Research Announcements, 2017, 24: 64-67. doi: 10.3934/era.2017.24.007

[19]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[20]

Tobias Wichtrey. Harmonic limits of dynamical systems. Conference Publications, 2011, 2011 (Special) : 1432-1439. doi: 10.3934/proc.2011.2011.1432

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (1)

[Back to Top]