-
Previous Article
Liénard and Riccati differential equations related via Lie Algebras
- DCDS-B Home
- This Issue
-
Next Article
Global dynamics in a self--consistent model of elliptical galaxy
Computing the scattering map in the spatial Hill's problem
1. | Departament de Matemàtica Aplicada I, ETSEIB-Universitat Politècnica de Catalunya, Diagonal 647, E-08028 Barcelona, Spain |
2. | IEEC & Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Av Diagonal 647, ETSEIB, 08028 Barcelona, Spain |
  We recently computed the scattering map in the planar restricted three body problem using non-perturbative techniques, and we showed that it is a (nontrivial) integrable twist map.
  In the present paper, we compute the scattering map in a problem with three degrees of freedom using also non-perturbative techniques. Specifically, we compute the scattering map between the normally hyperbolic invariant manifolds $A_1$ and $A_2$ associated to the equilibrium points $L_1$ and $L_2$ in the spatial Hill's problem.
  In the planar problem, for each energy level (in a certain range) there is a unique Lyapunov periodic orbit around $L_{1,2}$. In the spatial problem, this periodic orbit is replaced by a three-dimensional invariant manifold practically full of invariant 2D tori. There are heteroclinic orbits between $A_1$ and $A_2$ connecting these invariant tori in rich combinations. Hence the scattering map in the spatial problem is more complicated, and it allows nontrivial transition chains.
  Scattering maps have application to e.g. mission design in Astrodynamics, and to the construction of diffusion orbits in the spatial Hill's problem.
[1] |
Lorenzo Arona, Josep J. Masdemont. Computation of heteroclinic orbits between normally hyperbolic invariant 3-spheres foliated by 2-dimensional invariant Tori in Hill's problem. Conference Publications, 2007, 2007 (Special) : 64-74. doi: 10.3934/proc.2007.2007.64 |
[2] |
Jungsoo Kang. Some remarks on symmetric periodic orbits in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 5229-5245. doi: 10.3934/dcds.2014.34.5229 |
[3] |
Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261 |
[4] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[5] |
Henk Broer, Aaron Hagen, Gert Vegter. Numerical approximation of normally hyperbolic invariant manifolds. Conference Publications, 2003, 2003 (Special) : 133-140. doi: 10.3934/proc.2003.2003.133 |
[6] |
Niraj Pathak, V. O. Thomas, Elbaz I. Abouelmagd. The perturbed photogravitational restricted three-body problem: Analysis of resonant periodic orbits. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 849-875. doi: 10.3934/dcdss.2019057 |
[7] |
Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569 |
[8] |
Maciej J. Capiński, Piotr Zgliczyński. Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 641-670. doi: 10.3934/dcds.2011.30.641 |
[9] |
Amadeu Delshams, Marian Gidea, Pablo Roldán. Transition map and shadowing lemma for normally hyperbolic invariant manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1089-1112. doi: 10.3934/dcds.2013.33.1089 |
[10] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[11] |
Hadia H. Selim, Juan L. G. Guirao, Elbaz I. Abouelmagd. Libration points in the restricted three-body problem: Euler angles, existence and stability. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 703-710. doi: 10.3934/dcdss.2019044 |
[12] |
Qinglong Zhou, Yongchao Zhang. Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1763-1787. doi: 10.3934/dcds.2017074 |
[13] |
Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229 |
[14] |
Frederic Gabern, Àngel Jorba, Philippe Robutel. On the accuracy of restricted three-body models for the Trojan motion. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 843-854. doi: 10.3934/dcds.2004.11.843 |
[15] |
Christopher K. R. T. Jones, Siu-Kei Tin. Generalized exchange lemmas and orbits heteroclinic to invariant manifolds. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 967-1023. doi: 10.3934/dcdss.2009.2.967 |
[16] |
Edward Belbruno. Random walk in the three-body problem and applications. Discrete and Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519 |
[17] |
Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397 |
[18] |
Maciej J. Capiński. Covering relations and the existence of topologically normally hyperbolic invariant sets. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 705-725. doi: 10.3934/dcds.2009.23.705 |
[19] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[20] |
Abimael Bengochea, Manuel Falconi, Ernesto Pérez-Chavela. Horseshoe periodic orbits with one symmetry in the general planar three-body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 987-1008. doi: 10.3934/dcds.2013.33.987 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]