\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems

Abstract Related Papers Cited by
  • We construct a posteriori error estimators for approximate solutions of linear parabolic equations. We consider discretizations of the problem by modified discontinuous Galerkin schemes in time and continuous Galerkin methods in space. Especially, finite element spaces are permitted to change at different time levels. Exploiting Crank-Nicolson reconstruction idea introduced by Akrivis, Makridakis & Nochetto [2], we derive space-time a posteriori error estimators of second order in time for the Crank-Nicolson-Galerkin finite element method.
    Mathematics Subject Classification: Primary: 65K10, 65M12, 65M60; Secondary: 76.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(72) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return