# American Institute of Mathematical Sciences

September  2008, 10(4): 925-956. doi: 10.3934/dcdsb.2008.10.925

## Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow

 1 Escuela Superior de Ingenieros, Dpto. de Ingeniera Aeroespacial, Camino de los Descubrimientos s.n., 41092 Sevilla, Spain 2 Université d’Orléans, UFR Sciences, Fédération Denis Poisson Mathématiques, Laboratoire MAPMO, UMR 6628, Route de Chartres, BP 6759, 45067 Orléans Cedex 2 3 Labo. Jacques-Louis Lions, Univ. Pierre et Marie Curie and Institut Universitaire de France, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France

Received  February 2007 Revised  March 2008 Published  August 2008

We consider the problem of generating and tracking a trajectory between two arbitrary parabolic profiles of a periodic 2D channel flow, which is linearly unstable for high Reynolds numbers. Also known as the Poiseuille flow, this problem is frequently cited as a paradigm for transition to turbulence. Our procedure consists in generating an exact trajectory of the nonlinear system that approaches exponentially the objective profile. Using a backstepping method, we then design boundary control laws guaranteeing that the error between the state and the trajectory decays exponentially in $L^2$, $H^1$, and $H^2$ norms. The result is first proved for the linearized Stokes equations, then shown to hold locally for the nonlinear Navier-Stokes system.
Citation: Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925
 [1] Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109 [2] Andrei Fursikov, Alexey V. Gorshkov. Certain questions of feedback stabilization for Navier-Stokes equations. Evolution Equations & Control Theory, 2012, 1 (1) : 109-140. doi: 10.3934/eect.2012.1.109 [3] Viorel Barbu, Ionuţ Munteanu. Internal stabilization of Navier-Stokes equation with exact controllability on spaces with finite codimension. Evolution Equations & Control Theory, 2012, 1 (1) : 1-16. doi: 10.3934/eect.2012.1.1 [4] Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609 [5] Tobias Breiten, Karl Kunisch. Feedback stabilization of the three-dimensional Navier-Stokes equations using generalized Lyapunov equations. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4197-4229. doi: 10.3934/dcds.2020178 [6] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 [7] Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149 [8] Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the Navier-Stokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89-106. doi: 10.3934/eect.2015.4.89 [9] Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147 [10] Jean-Pierre Raymond, Laetitia Thevenet. Boundary feedback stabilization of the two dimensional Navier-Stokes equations with finite dimensional controllers. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 1159-1187. doi: 10.3934/dcds.2010.27.1159 [11] Shijin Ding, Zhilin Lin, Dongjuan Niu. Boundary layer for 3D plane parallel channel flows of nonhomogeneous incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4579-4596. doi: 10.3934/dcds.2020193 [12] Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169 [13] Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 [14] Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 [15] Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 [16] C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 [17] Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 [18] Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 [19] Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 269-288. doi: 10.3934/dcds.2004.10.269 [20] Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063

2020 Impact Factor: 1.327