September  2008, 10(4): 997-1019. doi: 10.3934/dcdsb.2008.10.997

A generalized projective dynamic for solving extreme and interior eigenvalue problems

1. 

Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China, China

Received  August 2007 Revised  February 2008 Published  August 2008

In [18] (Golub and Liao), a continuous-time system which is based on the projective dynamic is proposed to solve some concave optimization problems (with the unit ball constraint) resulted from extreme and interior eigenvalue problems. The convergence inside the unit ball is established; however, neither further convergence result outside the unit ball nor the stability analysis is available. Moreover, preliminary numerical experience indicates that this method is sensitive to a parameter whose optimal value is still difficult to determine. After analyzing the stability of this dynamic, in this paper, we develop a generalized model and analyze the convergence of the new model both inside and outside the unit ball. The flow of the generalized model is proved to converge almost globally to some eigenvector corresponding to the smallest eigenvalue, and share many surprisingly analogous properties with the Rayleigh quotient gradient flow. Links of our generalized projective dynamical system with other related works are also discussed. The efficiency of our new model is both addressed in theory and verified in numerical testing.
Citation: Lei-Hong Zhang, Li-Zhi Liao. A generalized projective dynamic for solving extreme and interior eigenvalue problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 997-1019. doi: 10.3934/dcdsb.2008.10.997
[1]

Feng Li, Erik Lindgren. Large time behavior for a nonlocal nonlinear gradient flow. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022079

[2]

Wenqing Hu, Chris Junchi Li. A convergence analysis of the perturbed compositional gradient flow: Averaging principle and normal deviations. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4951-4977. doi: 10.3934/dcds.2018216

[3]

Samir Salem. A gradient flow approach of propagation of chaos. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5729-5754. doi: 10.3934/dcds.2020243

[4]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A linearized system describing stationary incompressible viscous flow around rotating and translating bodies: Improved decay estimates of the velocity and its gradient. Conference Publications, 2011, 2011 (Special) : 351-361. doi: 10.3934/proc.2011.2011.351

[5]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure and Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[6]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[7]

Bertram Düring, Daniel Matthes, Josipa Pina Milišić. A gradient flow scheme for nonlinear fourth order equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 935-959. doi: 10.3934/dcdsb.2010.14.935

[8]

Martin Gugat, Alexander Keimer, Günter Leugering, Zhiqiang Wang. Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks. Networks and Heterogeneous Media, 2015, 10 (4) : 749-785. doi: 10.3934/nhm.2015.10.749

[9]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[10]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[11]

K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803

[12]

Dmitrii Rachinskii. Realization of arbitrary hysteresis by a low-dimensional gradient flow. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 227-243. doi: 10.3934/dcdsb.2016.21.227

[13]

Matthias Erbar, Dominik Forkert, Jan Maas, Delio Mugnolo. Gradient flow formulation of diffusion equations in the Wasserstein space over a Metric graph. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022023

[14]

J. K. Krottje. On the dynamics of a mixed parabolic-gradient system. Communications on Pure and Applied Analysis, 2003, 2 (4) : 521-537. doi: 10.3934/cpaa.2003.2.521

[15]

Federica Mennuni, Addolorata Salvatore. Existence of minimizers for a quasilinear elliptic system of gradient type. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022013

[16]

Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial and Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139

[17]

Huijuan Li, Junxia Wang. Input-to-state stability of continuous-time systems via finite-time Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 841-857. doi: 10.3934/dcdsb.2019192

[18]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[19]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[20]

Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial and Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]