• Previous Article
    Asymptotic behavior of size-structured populations via juvenile-adult interaction
  • DCDS-B Home
  • This Issue
  • Next Article
    Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations with inhomogeneous nonlinearities
March  2008, 9(2): 235-248. doi: 10.3934/dcdsb.2008.9.235

Adaptive synchronization of a class of uncertain chaotic systems

1. 

Laboratory of Applied Mathematics, Department of Mathematics and Computer Science, Faculty of Science, University of Douala, P.O. Box 24157 Douala, Cameroon

2. 

Department of Mathematics, Faculty of Science, University Marien Ngouabi, P.O. Box 69, Brazzaville, Congo

Received  March 2007 Revised  August 2007 Published  December 2007

The aim of this paper is to study the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. A robust adaptive observer-based response system is designed to synchronize a given chaotic system with uncertainties. An improved adaptation law on the upper bound of uncertainties is proposed to guarantee the boundedness of both the synchronization error and the estimated feedback coupling gains when a boundary layer technique is employed. A numerical example of the modified Chua’s circuit is considered to show the efficiency and effectiveness of this scheme.
Citation: Samuel Bowong, Jean Luc Dimi. Adaptive synchronization of a class of uncertain chaotic systems. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 235-248. doi: 10.3934/dcdsb.2008.9.235
[1]

Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010

[2]

Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787

[3]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[4]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[5]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[6]

Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017

[7]

Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014

[8]

Yuanyuan Li, Yunliang Wei. Composite control with observers for a class of stochastic systems with multiple disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1859-1870. doi: 10.3934/dcdss.2022019

[9]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[10]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control and Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051

[11]

Xiang Dong, Chengcheng Ren, Shuping He, Long Cheng, Shuo Wang. Finite-time sliding mode control for UVMS via T-S fuzzy approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1699-1712. doi: 10.3934/dcdss.2021167

[12]

Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

[13]

Tayel Dabbous. Adaptive control of nonlinear systems using fuzzy systems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 861-880. doi: 10.3934/jimo.2010.6.861

[14]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[15]

Yu-Jing Shi, Yan Ma. Finite/fixed-time synchronization for complex networks via quantized adaptive control. Electronic Research Archive, 2021, 29 (2) : 2047-2061. doi: 10.3934/era.2020104

[16]

Guoliang Cai, Lan Yao, Pei Hu, Xiulei Fang. Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2019-2028. doi: 10.3934/dcdsb.2013.18.2019

[17]

Mohammed Elarbi Achhab. On observers and compensators for infinite dimensional semilinear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 131-142. doi: 10.3934/eect.2015.4.131

[18]

Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of time-varying systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3585-3603. doi: 10.3934/dcdsb.2021197

[19]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[20]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]