-
Previous Article
A non-autonomous bifurcation theory for deterministic scalar differential equations
- DCDS-B Home
- This Issue
-
Next Article
Pullback attractors and statistical solutions for 2-D Navier-Stokes equations
Time averaging for nonautonomous/random linear parabolic equations
1. | Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, PL-50-370 Wrocław, Poland |
2. | Department of Mathematics & Statistics, Auburn University, Auburn, AL 36849, United States |
[1] |
Janusz Mierczyński, Wenxian Shen. Formulas for generalized principal Lyapunov exponent for parabolic PDEs. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1189-1199. doi: 10.3934/dcdss.2016048 |
[2] |
Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems and Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020 |
[3] |
Frédéric Mazenc, Christophe Prieur. Strict Lyapunov functions for semilinear parabolic partial differential equations. Mathematical Control and Related Fields, 2011, 1 (2) : 231-250. doi: 10.3934/mcrf.2011.1.231 |
[4] |
Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Principal Floquet subspaces and exponential separations of type Ⅱ with applications to random delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6163-6193. doi: 10.3934/dcds.2018265 |
[5] |
Nobuyuki Kato, Norio Kikuchi. Campanato-type boundary estimates for Rothe's scheme to parabolic partial differential systems with constant coefficients. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 737-760. doi: 10.3934/dcds.2007.19.737 |
[6] |
J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81 |
[7] |
Masaki Hibino. Gevrey asymptotic theory for singular first order linear partial differential equations of nilpotent type — Part I —. Communications on Pure and Applied Analysis, 2003, 2 (2) : 211-231. doi: 10.3934/cpaa.2003.2.211 |
[8] |
A. Rodríguez-Bernal. Perturbation of the exponential type of linear nonautonomous parabolic equations and applications to nonlinear equations. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 1003-1032. doi: 10.3934/dcds.2009.25.1003 |
[9] |
Farid Ammar Khodja, Franz Chouly, Michel Duprez. Partial null controllability of parabolic linear systems. Mathematical Control and Related Fields, 2016, 6 (2) : 185-216. doi: 10.3934/mcrf.2016001 |
[10] |
Eugenia N. Petropoulou, Panayiotis D. Siafarikas. Polynomial solutions of linear partial differential equations. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1053-1065. doi: 10.3934/cpaa.2009.8.1053 |
[11] |
Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1309-1340. doi: 10.3934/dcdsb.2019018 |
[12] |
V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44. |
[13] |
Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591 |
[14] |
Kexue Li, Jigen Peng, Junxiong Jia. Explosive solutions of parabolic stochastic partial differential equations with lévy noise. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5105-5125. doi: 10.3934/dcds.2017221 |
[15] |
Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure and Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039 |
[16] |
Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879 |
[17] |
Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179 |
[18] |
Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks and Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9 |
[19] |
Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 |
[20] |
Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]