# American Institute of Mathematical Sciences

January  2008, 9(1): 83-101. doi: 10.3934/dcdsb.2008.9.83

## A coupled map lattice model of tree dispersion

 1 Department of Mathematics, Wake Forest University, Winston Salem, NC 27109, United States 2 Department of Biostatistical Sciences, Wake Forest University Health Sciences, Medical Center Blvd., Winston Salem, NC 27157, United States

Received  January 2007 Revised  August 2007 Published  October 2007

We study the coupled map lattice model of tree dispersion. Under quite general conditions on the nonlinearity of the local growth function and the dispersion (coupling) function, we show that when the maximal dispersal distance is finite and the spatial redistribution pattern remains unchanged in time, the moving front will always converge in the strongest sense to an asymptotic state: a traveling wave with finite length of the wavefront. We also show that when the climate becomes more favorable to growth or germination, the front at any nonzero density level will have a positive acceleration. An estimation of the magnitude of the acceleration is given.
Citation: Miaohua Jiang, Qiang Zhang. A coupled map lattice model of tree dispersion. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 83-101. doi: 10.3934/dcdsb.2008.9.83
 [1] Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101 [2] Darryl D. Holm, Ruiao Hu. Nonlinear dispersion in wave-current interactions. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022004 [3] Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113 [4] Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397 [5] Rui Huang, Ming Mei, Yong Wang. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3621-3649. doi: 10.3934/dcds.2012.32.3621 [6] Yan Cui, Yanfei Wang. Velocity modeling based on Rayleigh wave dispersion curve and sparse optimization inversion. Inverse Problems and Imaging, 2021, 15 (5) : 1121-1134. doi: 10.3934/ipi.2021031 [7] Jinqiao Duan, Vincent J. Ervin, Daniel Schertzer. Dispersion in flows with obstacles and uncertainty. Conference Publications, 2001, 2001 (Special) : 131-136. doi: 10.3934/proc.2001.2001.131 [8] Rui Huang, Ming Mei, Kaijun Zhang, Qifeng Zhang. Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1331-1353. doi: 10.3934/dcds.2016.36.1331 [9] Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009 [10] Birol Yüceoǧlu, ş. ilker Birbil, özgür Gürbüz. Dispersion with connectivity in wireless mesh networks. Journal of Industrial and Management Optimization, 2018, 14 (2) : 759-784. doi: 10.3934/jimo.2017074 [11] Christophe Cheverry, Adrien Fontaine. Dispersion relations in cold magnetized plasmas. Kinetic and Related Models, 2017, 10 (2) : 373-421. doi: 10.3934/krm.2017015 [12] E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure and Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457 [13] Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 [14] Lianbing She, Mirelson M. Freitas, Mauricio S. Vinhote, Renhai Wang. Existence and approximation of attractors for nonlinear coupled lattice wave equations. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021272 [15] David Lannes, Jean-Claude Saut. Remarks on the full dispersion Kadomtsev-Petviashvli equation. Kinetic and Related Models, 2013, 6 (4) : 989-1009. doi: 10.3934/krm.2013.6.989 [16] Caroline Obrecht, J.-C. Saut. Remarks on the full dispersion Davey-Stewartson systems. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1547-1561. doi: 10.3934/cpaa.2015.14.1547 [17] Joshua Du, Liancheng Wang. Dispersion relations for supersonic multiple virtual jets. Conference Publications, 2011, 2011 (Special) : 381-390. doi: 10.3934/proc.2011.2011.381 [18] Amy Allwright, Abdon Atangana, Toufik Mekkaoui. Fractional and fractal advection-dispersion model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2055-2074. doi: 10.3934/dcdss.2021061 [19] Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 [20] Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

2021 Impact Factor: 1.497