# American Institute of Mathematical Sciences

June  2009, 11(4): 1039-1055. doi: 10.3934/dcdsb.2009.11.1039

## Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system

 1 Department of Mathematics, University of Bergen, Johannes Brunsgate 12, 5008 Bergen, Norway

Received  July 2008 Revised  December 2008 Published  April 2009

The four dimensional Rössler system is investigated. For this system the Poincaré map exhibits chaotic dynamics with two expanding directions and one strongly contracting direction. It is shown that the 16th iterate of this Poincaré map has a nontrivial invariant set on which it is semiconjugated to the full shift on two symbols. Moreover, it is proven that there exist infinitely many homoclinic and heteroclinic solutions connecting periodic orbits of period two and four, respectively. The proof utilizes the method of covering relations with smooth tools (cone conditions).
The proof is computer assisted - interval arithmetic is used to obtain bounds of the Poincaré map and its derivative.
Citation: Daniel Wilczak. Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1039-1055. doi: 10.3934/dcdsb.2009.11.1039
 [1] Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 [2] Jan Bouwe van den Berg, Ray Sheombarsing. Rigorous numerics for ODEs using Chebyshev series and domain decomposition. Journal of Computational Dynamics, 2021, 8 (3) : 353-401. doi: 10.3934/jcd.2021015 [3] Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725 [4] Hildebrando M. Rodrigues, Tomás Caraballo, Marcio Gameiro. Dynamics of a Class of ODEs via Wavelets. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2337-2355. doi: 10.3934/cpaa.2017115 [5] Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621 [6] George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43 [7] Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301 [8] Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269 [9] Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245 [10] Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581 [11] Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581 [12] Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487 [13] David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287 [14] Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014 [15] Mike Boyle. The work of Mike Hochman on multidimensional symbolic dynamics and Borel dynamics. Journal of Modern Dynamics, 2019, 15: 427-435. doi: 10.3934/jmd.2019026 [16] Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284 [17] Thorsten Riess. Numerical study of secondary heteroclinic bifurcations near non-reversible homoclinic snaking. Conference Publications, 2011, 2011 (Special) : 1244-1253. doi: 10.3934/proc.2011.2011.1244 [18] E. Canalias, Josep J. Masdemont. Homoclinic and heteroclinic transfer trajectories between planar Lyapunov orbits in the sun-earth and earth-moon systems. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 261-279. doi: 10.3934/dcds.2006.14.261 [19] Olivier P. Le Maître, Lionel Mathelin, Omar M. Knio, M. Yousuff Hussaini. Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 199-226. doi: 10.3934/dcds.2010.28.199 [20] Feng-Bin Wang, Sze-Bi Hsu, Wendi Wang. Dynamics of harmful algae with seasonal temperature variations in the cove-main lake. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 313-335. doi: 10.3934/dcdsb.2016.21.313

2020 Impact Factor: 1.327