January  2009, 11(1): 191-203. doi: 10.3934/dcdsb.2009.11.191

Existence of bounded solutions to some nonlinear degenerate elliptic systems

1. 

Università di L'Aquila, Dipartimento di Matematica Pura ed Applicata, Via Vetoio, Coppito, 67100 L'Aquila, Italy

2. 

Via Sant’Amasio 18, 03039 Sora, Italy

Received  November 2007 Revised  June 2008 Published  November 2008

We prove existence of bounded weak solutions $u: \Omega \subset \R^{n} \to \R^{N}$ for the Dirichlet problem

-div $( a(x, u(x), Du(x) ) ) = f(x),$ $ x \in \Omega$;
$u(x) = 0, $ $ x \in \partial\Omega$

where $\Omega$ is a bounded open set, $a$ is a suitable degenerate elliptic operator and $f$ has enough integrability.

Citation: Francesco Leonetti, Pier Vincenzo Petricca. Existence of bounded solutions to some nonlinear degenerate elliptic systems. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 191-203. doi: 10.3934/dcdsb.2009.11.191
[1]

Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure and Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23

[2]

H. M. Yin. Optimal regularity of solution to a degenerate elliptic system arising in electromagnetic fields. Communications on Pure and Applied Analysis, 2002, 1 (1) : 127-134. doi: 10.3934/cpaa.2002.1.127

[3]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[4]

Adnan Ben Aziza, Mohamed Ben Chrouda. Characterization for the existence of bounded solutions to elliptic equations. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1157-1170. doi: 10.3934/dcds.2019049

[5]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[6]

N. V. Chemetov. Nonlinear hyperbolic-elliptic systems in the bounded domain. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1079-1096. doi: 10.3934/cpaa.2011.10.1079

[7]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2505-2518. doi: 10.3934/cpaa.2020272

[9]

Yuxia Guo, Jianjun Nie. Classification for positive solutions of degenerate elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1457-1475. doi: 10.3934/dcds.2018130

[10]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[11]

Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193

[12]

Mónica Clapp, Jorge Faya. Multiple solutions to a weakly coupled purely critical elliptic system in bounded domains. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3265-3289. doi: 10.3934/dcds.2019135

[13]

Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695

[14]

Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213-240. doi: 10.3934/cpaa.2006.5.213

[15]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[16]

Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621

[17]

Dongho Chae. Existence of a semilinear elliptic system with exponential nonlinearities. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 709-718. doi: 10.3934/dcds.2007.18.709

[18]

Jian Zhang, Wen Zhang, Xiaoliang Xie. Existence and concentration of semiclassical solutions for Hamiltonian elliptic system. Communications on Pure and Applied Analysis, 2016, 15 (2) : 599-622. doi: 10.3934/cpaa.2016.15.599

[19]

Federica Mennuni, Addolorata Salvatore. Existence of minimizers for a quasilinear elliptic system of gradient type. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022013

[20]

Shun Kodama. A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. Communications on Pure and Applied Analysis, 2017, 16 (2) : 671-698. doi: 10.3934/cpaa.2017033

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]