March  2009, 11(2): 263-282. doi: 10.3934/dcdsb.2009.11.263

Semi-discretization in time for nonlinear Zakharov waves equations

1. 

MAB, Université Bordeaux I and CNRS UMR 5466, 351 Cours de la Libération, 33405 Talence Cedex

2. 

CEA CESTA, SIS, BP 2, 33114 Le Barp, France, France

Received  November 2007 Revised  May 2008 Published  December 2008

In this paper we construct and study discretizations of an extension of the Zakharov system occurring in plasma physics. This system is intermediate between Euler-Maxwell and Zakharov systems. The usual Zakharov system can be recovered by taking a singular limit. We introduce two numerical schemes that take into account this singular limit process and that are asymptotic preserving. We prove some stability and convergence results and we perform some numerical tests showing that the range of validity of the extended system is wider than that of the usual Zakharov system.
Citation: T. Colin, Géraldine Ebrard, Gérard Gallice. Semi-discretization in time for nonlinear Zakharov waves equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 263-282. doi: 10.3934/dcdsb.2009.11.263
[1]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[2]

Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153

[3]

Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022074

[4]

Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873

[5]

Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583

[6]

Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587

[7]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[8]

Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167

[9]

François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks and Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1

[10]

Eric Falcon. Laboratory experiments on wave turbulence. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819

[11]

W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111

[12]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems and Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[13]

Mimi Dai. Phenomenologies of intermittent Hall MHD turbulence. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021285

[14]

Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2275-2312. doi: 10.3934/dcdsb.2021132

[15]

Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145

[16]

Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040

[17]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

[18]

Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145

[19]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[20]

Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]