-
Previous Article
Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain
- DCDS-B Home
- This Issue
-
Next Article
A geometric analysis of trajectory design for underwater vehicles
Semi-discretization in time for nonlinear Zakharov waves equations
1. | MAB, Université Bordeaux I and CNRS UMR 5466, 351 Cours de la Libération, 33405 Talence Cedex |
2. | CEA CESTA, SIS, BP 2, 33114 Le Barp, France, France |
[1] |
Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051 |
[2] |
Yoshiho Akagawa, Elliott Ginder, Syota Koide, Seiro Omata, Karel Svadlenka. A Crank-Nicolson type minimization scheme for a hyperbolic free boundary problem. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2661-2681. doi: 10.3934/dcdsb.2021153 |
[3] |
Panagiotis Paraschis, Georgios E. Zouraris. On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022074 |
[4] |
Dongho Kim, Eun-Jae Park. Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 873-886. doi: 10.3934/dcdsb.2008.10.873 |
[5] |
Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583 |
[6] |
Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic and Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 |
[7] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[8] |
Setsuro Fujiié, Jens Wittsten. Quantization conditions of eigenvalues for semiclassical Zakharov-Shabat systems on the circle. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3851-3873. doi: 10.3934/dcds.2018167 |
[9] |
François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks and Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1 |
[10] |
Eric Falcon. Laboratory experiments on wave turbulence. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819 |
[11] |
W. Layton, R. Lewandowski. On a well-posed turbulence model. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 111-128. doi: 10.3934/dcdsb.2006.6.111 |
[12] |
Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems and Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839 |
[13] |
Mimi Dai. Phenomenologies of intermittent Hall MHD turbulence. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021285 |
[14] |
Mengxin Chen, Ranchao Wu, Yancong Xu. Dynamics of a depletion-type Gierer-Meinhardt model with Langmuir-Hinshelwood reaction scheme. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2275-2312. doi: 10.3934/dcdsb.2021132 |
[15] |
Felipe Linares, Mahendra Panthee, Tristan Robert, Nikolay Tzvetkov. On the periodic Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3521-3533. doi: 10.3934/dcds.2019145 |
[16] |
Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040 |
[17] |
Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092 |
[18] |
Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145 |
[19] |
Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781 |
[20] |
Nusret Balci, Ciprian Foias, M. S Jolly, Ricardo Rosa. On universal relations in 2-D turbulence. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1327-1351. doi: 10.3934/dcds.2010.27.1327 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]