March  2009, 11(2): 283-314. doi: 10.3934/dcdsb.2009.11.283

Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain


Università di Salerno, DIIMA, Via Ponte don Melillo, 84084 Fisciano (SA), Italy


Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, DMA “R. Caccioppoli”, Complesso Monte S. Angelo, via Cintia, 80126 Napoli


Dnipropetrovsk National University, Department of Differential Equations, Kozakov str., 18/14, 49050 Dnipropetrovsk, Ukraine

Received  October 2007 Revised  March 2008 Published  December 2008

In this paper we study an optimal boundary control problem for the 3D steady-state Navier-Stokes equation in a cylindrically perforated domain $\Omega_{\epsilon}$. The control is the boundary velocity field supported on the 'vertical' sides of thin cylinders. We minimize the vorticity of viscous flow through thick perforated domain. We show that an optimal solution to some limit problem in a non-perforated domain can be used as basis for the construction of suboptimal controls for the original control problem. It is worth noticing that the limit problem may take the form of either a variational calculation problem or an optimal control problem for Brinkman's law with another cost functional, depending on the cross-size of thin cylinders.
Citation: Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169


Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495


Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110


Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61


Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651


Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021


Hugo Beirão da Veiga. Navier-Stokes equations: Some questions related to the direction of the vorticity. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 203-213. doi: 10.3934/dcdss.2019014


Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967


Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107


A. V. Fursikov. Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 289-314. doi: 10.3934/dcds.2004.10.289


Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073


C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403


Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148


Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631


Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113


G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure & Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583


Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006


Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907


Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021, 41 (9) : 4421-4460. doi: 10.3934/dcds.2021042


Rafael Vázquez, Emmanuel Trélat, Jean-Michel Coron. Control for fast and stable Laminar-to-High-Reynolds-Numbers transfer in a 2D Navier-Stokes channel flow. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 925-956. doi: 10.3934/dcdsb.2008.10.925

2020 Impact Factor: 1.327


  • PDF downloads (40)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]