# American Institute of Mathematical Sciences

March  2009, 11(2): 387-419. doi: 10.3934/dcdsb.2009.11.387

## A finite element method for vibration analysis of elastic plate-plate structures

 1 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China 2 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, Scientific Computing Key Laboratory of Shanghai Universities, Shanghai Normal University, Division of Computational Science, E–Institute of Shanghai Universities, Shanghai Normal University, China

Received  August 2007 Revised  October 2008 Published  December 2008

The semi and fully discrete finite element methods are proposed for investigating vibration analysis of elastic plate-plate structures. In the space directions, the longitudinal displacements on plates are discretized by conforming linear elements, and the corresponding transverse displacements are discretized by the Morley element, leading to a semi-discrete finite element method for the problem under consideration. Applying the second order central difference to discretize the time derivative, a fully discrete scheme is obtained, and two approaches for choosing the initial functions are also introduced. The error analysis in the energy norm for the semi and fully discrete methods are established, and some numerical examples are included to validate the theoretical analysis.
Citation: Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387
 [1] Aliki D. Muradova, Georgios K. Tairidis, Georgios E. Stavroulakis. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 251-271. doi: 10.3934/naco.2017017 [2] Andrzej Nowakowski. Variational analysis of semilinear plate equation with free boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3133-3154. doi: 10.3934/dcds.2015.35.3133 [3] Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations and Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008 [4] Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure and Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719 [5] S. E. Pastukhova. Asymptotic analysis in elasticity problems on thin periodic structures. Networks and Heterogeneous Media, 2009, 4 (3) : 577-604. doi: 10.3934/nhm.2009.4.577 [6] Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 [7] Shun Li, Peng-Fei Yao. Modeling of a nonlinear plate. Evolution Equations and Control Theory, 2012, 1 (1) : 155-169. doi: 10.3934/eect.2012.1.155 [8] Michela Eleuteri, Jana Kopfov, Pavel Krej?. Fatigue accumulation in an oscillating plate. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 909-923. doi: 10.3934/dcdss.2013.6.909 [9] Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations and Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557 [10] Xiaoying Han, Jinglai Li, Dongbin Xiu. Error analysis for numerical formulation of particle filter. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1337-1354. doi: 10.3934/dcdsb.2015.20.1337 [11] Anders C. Hansen. A theoretical framework for backward error analysis on manifolds. Journal of Geometric Mechanics, 2011, 3 (1) : 81-111. doi: 10.3934/jgm.2011.3.81 [12] Walter Allegretto, Yanping Lin, Ningning Yan. A posteriori error analysis for FEM of American options. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 957-978. doi: 10.3934/dcdsb.2006.6.957 [13] Javier Fernández, Sebastián Elías Graiff Zurita, Sergio Grillo. Erratum for "Error analysis of forced discrete mechanical systems". Journal of Geometric Mechanics, 2021, 13 (4) : 679-679. doi: 10.3934/jgm.2021030 [14] Javier Fernández, Sebastián Elías Graiff Zurita, Sergio Grillo. Error analysis of forced discrete mechanical systems. Journal of Geometric Mechanics, 2021, 13 (4) : 533-606. doi: 10.3934/jgm.2021017 [15] Muhammad I. Mustafa. Viscoelastic plate equation with boundary feedback. Evolution Equations and Control Theory, 2017, 6 (2) : 261-276. doi: 10.3934/eect.2017014 [16] Moncef Aouadi, Taoufik Moulahi. The controllability of a thermoelastic plate problem revisited. Evolution Equations and Control Theory, 2018, 7 (1) : 1-31. doi: 10.3934/eect.2018001 [17] Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure and Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161 [18] Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181 [19] Bingzheng Li, Zhengzhan Dai. Error analysis on regularized regression based on the Maximum correntropy criterion. Mathematical Foundations of Computing, 2020, 3 (1) : 25-40. doi: 10.3934/mfc.2020003 [20] Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248

2020 Impact Factor: 1.327