January  2009, 11(1): 43-55. doi: 10.3934/dcdsb.2009.11.43

Higher integrability for minimizers of anisotropic functionals

1. 

Università del Sannio, Piazza Arechi II - 82100 Benevento, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli, Via Cintia - 80126, Napoli, Italy

3. 

Dipartimento di Matematica ed Applicazioni, via Cintia, 80126 Napoli, Italy

Received  November 2007 Revised  April 2008 Published  November 2008

In this paper we establish higher integrability results for local minimizers of variational integrals satisfying a degenerate ellipticity condition. The function which measures the degeneracy of the problem is assumed to be exponentially integrable.
Citation: Menita Carozza, Gioconda Moscariello, Antonia Passarelli. Higher integrability for minimizers of anisotropic functionals. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 43-55. doi: 10.3934/dcdsb.2009.11.43
[1]

Regina Martínez, Carles Simó. Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 1-24. doi: 10.3934/dcds.2011.29.1

[2]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[3]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589

[4]

Maria Alessandra Ragusa, Atsushi Tachikawa. Estimates of the derivatives of minimizers of a special class of variational integrals. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1411-1425. doi: 10.3934/dcds.2011.31.1411

[5]

Sergi Simon. Linearised higher variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[6]

Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797

[7]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[8]

Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335

[9]

Kristian Moring, Christoph Scheven, Sebastian Schwarzacher, Thomas Singer. Global higher integrability of weak solutions of porous medium systems. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1697-1745. doi: 10.3934/cpaa.2020069

[10]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[11]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1969-2009. doi: 10.3934/dcds.2015.35.1969

[12]

Primitivo B. Acosta-Humánez, Martha Alvarez-Ramírez, David Blázquez-Sanz, Joaquín Delgado. Non-integrability criterium for normal variational equations around an integrable subsystem and an example: The Wilberforce spring-pendulum. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 965-986. doi: 10.3934/dcds.2013.33.965

[13]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[14]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[15]

Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493

[16]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[17]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[18]

Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009

[19]

Chjan C. Lim, Junping Shi. The role of higher vorticity moments in a variational formulation of Barotropic flows on a rotating sphere. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 717-740. doi: 10.3934/dcdsb.2009.11.717

[20]

Michał Jóźwikowski, Mikołaj Rotkiewicz. Bundle-theoretic methods for higher-order variational calculus. Journal of Geometric Mechanics, 2014, 6 (1) : 99-120. doi: 10.3934/jgm.2014.6.99

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (2)

[Back to Top]