March  2009, 11(2): 479-496. doi: 10.3934/dcdsb.2009.11.479

A model for the transmission of malaria


Institute of Mathematics, School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China

Received  October 2007 Revised  June 2008 Published  December 2008

In this paper, a new transmission model of human malaria in a partially immune population is formulated. We establish the basic reproduction number $\tilde{R}_0$ for the model. The existence and local stability of the equilibria are studied. Our results suggest that, if the disease-induced death rate is large enough, there may be endemic equilibrium when $\tilde{R}_0 < 1$ and the model undergoes a backward bifurcation and saddle-node bifurcation, which implies that bringing the basic reproduction number below 1 is not enough to eradicate malaria. Explicit subthreshold conditions in terms of parameters are obtained beyond the basic reproduction number which provides further guidelines for accessing control of the spread of malaria.
Citation: Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789


Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999


Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239


Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37


Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749


Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445


Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995


Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595


Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457


Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565


Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170


Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455


Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047


Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863


Muntaser Safan, Klaus Dietz. On the eradicability of infections with partially protective vaccination in models with backward bifurcation. Mathematical Biosciences & Engineering, 2009, 6 (2) : 395-407. doi: 10.3934/mbe.2009.6.395


A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV co-infection model with CTL-mediated immunity. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1725-1764. doi: 10.3934/dcdsb.2021108


Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527


Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 809-826. doi: 10.3934/dcds.2009.24.809


Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293


Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of time-varying systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3585-3603. doi: 10.3934/dcdsb.2021197

2020 Impact Factor: 1.327


  • PDF downloads (185)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]