
Previous Article
Sheared nematic liquid crystal polymer monolayers
 DCDSB Home
 This Issue

Next Article
Study on selfadaptive proportional control method for a class of output models
A model for the transmission of malaria
1.  Institute of Mathematics, School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China 
[1] 
Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789801. doi: 10.3934/mbe.2008.5.789 
[2] 
Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete and Continuous Dynamical Systems  B, 2014, 19 (4) : 9991025. doi: 10.3934/dcdsb.2014.19.999 
[3] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[4] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[5] 
Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virusdriven proliferation of target cells. Discrete and Continuous Dynamical Systems  B, 2014, 19 (6) : 17491768. doi: 10.3934/dcdsb.2014.19.1749 
[6] 
Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445458. doi: 10.3934/mbe.2006.3.445 
[7] 
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 9951001. doi: 10.3934/mbe.2014.11.995 
[8] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[9] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[10] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[11] 
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : . doi: 10.3934/cpaa.2021170 
[12] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[13] 
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797828. doi: 10.3934/mcrf.2020047 
[14] 
Sumei Li, Yicang Zhou. Backward bifurcation of an HTLVI model with immune response. Discrete and Continuous Dynamical Systems  B, 2016, 21 (3) : 863881. doi: 10.3934/dcdsb.2016.21.863 
[15] 
Muntaser Safan, Klaus Dietz. On the eradicability of infections with partially protective vaccination in models with backward bifurcation. Mathematical Biosciences & Engineering, 2009, 6 (2) : 395407. doi: 10.3934/mbe.2009.6.395 
[16] 
A. M. Elaiw, N. H. AlShamrani. Global stability of HIV/HTLV coinfection model with CTLmediated immunity. Discrete and Continuous Dynamical Systems  B, 2022, 27 (3) : 17251764. doi: 10.3934/dcdsb.2021108 
[17] 
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527552. doi: 10.3934/jmd.2013.7.527 
[18] 
Anna Ghazaryan, Christopher K. R. T. Jones. On the stability of high Lewis number combustion fronts. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 809826. doi: 10.3934/dcds.2009.24.809 
[19] 
Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 12931322. doi: 10.3934/dcds.2003.9.1293 
[20] 
Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of timevarying systems. Discrete and Continuous Dynamical Systems  B, 2022, 27 (7) : 35853603. doi: 10.3934/dcdsb.2021197 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]