-
Previous Article
Vibrations of a nonlinear dynamic beam between two stops
- DCDS-B Home
- This Issue
- Next Article
A viscoelastic Timoshenko beam with dynamic frictionless impact
1. | Department of Mathematics and Statistics, Arkansas State University, State University, AR 72467, United States |
2. | Department of Mathematics, The University of Iowa, Iowa City, IA 52242, United States |
[1] |
Andrzej Just, Zdzislaw Stempień. Optimal control problem for a viscoelastic beam and its galerkin approximation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 263-274. doi: 10.3934/dcdsb.2018018 |
[2] |
M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337 |
[3] |
María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201 |
[4] |
Yinhua Xia, Yan Xu, Chi-Wang Shu. Efficient time discretization for local discontinuous Galerkin methods. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 677-693. doi: 10.3934/dcdsb.2007.8.677 |
[5] |
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305 |
[6] |
Xiaofei Liu, Yong Wang. Weakening convergence conditions of a potential reduction method for tensor complementarity problems. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021080 |
[7] |
Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013 |
[8] |
Yanqiong Lu, Ruyun Ma. Disconjugacy conditions and spectrum structure of clamped beam equations with two parameters. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3283-3302. doi: 10.3934/cpaa.2020145 |
[9] |
Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91 |
[10] |
Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations and Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014 |
[11] |
Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209 |
[12] |
Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100 |
[13] |
Xiu-Fang Liu, Gen-Qi Xu. Exponential stabilization of Timoshenko beam with input and output delays. Mathematical Control and Related Fields, 2016, 6 (2) : 271-292. doi: 10.3934/mcrf.2016004 |
[14] |
Luong V. Nguyen. A note on optimality conditions for optimal exit time problems. Mathematical Control and Related Fields, 2015, 5 (2) : 291-303. doi: 10.3934/mcrf.2015.5.291 |
[15] |
Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021064 |
[16] |
Zaynab Salloum. Flows of weakly compressible viscoelastic fluids through a regular bounded domain with inflow-outflow boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 625-642. doi: 10.3934/cpaa.2010.9.625 |
[17] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[18] |
Bruce Geist and Joyce R. McLaughlin. Eigenvalue formulas for the uniform Timoshenko beam: the free-free problem. Electronic Research Announcements, 1998, 4: 12-17. |
[19] |
Zbigniew Bartosiewicz, Ülle Kotta, Maris Tőnso, Małgorzata Wyrwas. Accessibility conditions of MIMO nonlinear control systems on homogeneous time scales. Mathematical Control and Related Fields, 2016, 6 (2) : 217-250. doi: 10.3934/mcrf.2016002 |
[20] |
Laurence Cherfils, Stefania Gatti, Alain Miranville. Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2261-2290. doi: 10.3934/cpaa.2012.11.2261 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]