-
Previous Article
Analysis of a model of two parallel food chains
- DCDS-B Home
- This Issue
-
Next Article
Mathematical modelling of internal HIV dynamics
A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity
1. | Georgia Gwinnett College, Lawrenceville, GA 30043, United States |
2. | Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States |
3. | Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand, New Zealand, New Zealand |
4. | Biostatistics Division, Yale University, New Haven, CT 06520, United States |
5. | Department of Mathematics, Lafayette College, Easton, PA 18042, United States |
6. | Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States |
[1] |
Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences & Engineering, 2012, 9 (2) : 241-257. doi: 10.3934/mbe.2012.9.241 |
[2] |
Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319 |
[3] |
Thierry Colin, Marie-Christine Durrieu, Julie Joie, Yifeng Lei, Youcef Mammeri, Clair Poignard, Olivier Saut. Modeling of the migration of endothelial cells on bioactive micropatterned polymers. Mathematical Biosciences & Engineering, 2013, 10 (4) : 997-1015. doi: 10.3934/mbe.2013.10.997 |
[4] |
Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678 |
[5] |
Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55 |
[6] |
Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences & Engineering, 2010, 7 (1) : 171-185. doi: 10.3934/mbe.2010.7.171 |
[7] |
Linghui Yu, Zhipeng Qiu, Ting Guo. Modeling the effect of activation of CD4$^+$ T cells on HIV dynamics. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4491-4513. doi: 10.3934/dcdsb.2021238 |
[8] |
Eduardo Ibarguen-Mondragon, Lourdes Esteva, Leslie Chávez-Galán. A mathematical model for cellular immunology of tuberculosis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 973-986. doi: 10.3934/mbe.2011.8.973 |
[9] |
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 |
[10] |
Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019 |
[11] |
Bertrand Maury, Aude Roudneff-Chupin, Filippo Santambrogio. Congestion-driven dendritic growth. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1575-1604. doi: 10.3934/dcds.2014.34.1575 |
[12] |
Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent Pujo-Menjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2417-2442. doi: 10.3934/dcdsb.2018259 |
[13] |
Rinaldo M. Colombo, Thomas Lorenz, Nikolay I. Pogodaev. On the modeling of moving populations through set evolution equations. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 73-98. doi: 10.3934/dcds.2015.35.73 |
[14] |
Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082 |
[15] |
Daniele Avitabile, Stephen Coombes, Pedro M. Lima. Numerical investigation of a neural field model including dendritic processing. Journal of Computational Dynamics, 2020, 7 (2) : 271-290. doi: 10.3934/jcd.2020011 |
[16] |
Joanna R. Wares, Joseph J. Crivelli, Chae-Ok Yun, Il-Kyu Choi, Jana L. Gevertz, Peter S. Kim. Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1237-1256. doi: 10.3934/mbe.2015.12.1237 |
[17] |
S. M. Crook, M. Dur-e-Ahmad, S. M. Baer. A model of activity-dependent changes in dendritic spine density and spine structure. Mathematical Biosciences & Engineering, 2007, 4 (4) : 617-631. doi: 10.3934/mbe.2007.4.617 |
[18] |
Huaiyu Jian, Xiaolin Liu, Hongjie Ju. The regularity for a class of singular differential equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1307-1319. doi: 10.3934/cpaa.2013.12.1307 |
[19] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[20] |
Regilene Oliveira, Cláudia Valls. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1821-1834. doi: 10.3934/dcdsb.2020004 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]