September  2009, 12(2): 371-388. doi: 10.3934/dcdsb.2009.12.371

A degenerate diffusion-reaction model of an amensalistic biofilm control system: Existence and simulation of solutions


Department of Mathematics and Statistics, University of Guelph, Guelph, On, N1G 2W1, Canada, Canada


Institute of Biomathematics and Biometry, HelmholtzZentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

Received  September 2008 Revised  December 2008 Published  July 2009

We study a mathematical model that describes how a "good" bacterial biofilm controls the growth of a harmful pathogenic bacterial biofilm. The underlying mechanism is a modification of the local protonated acid concentration, which in turn decreases the local pH and, thus, makes growth conditions for the pathogens less favorable, while the control-agent itself is more tolerant to these changes. This system is described by a system of 5 density-dependent diffusion-reaction equations that show two nonlinear diffusion effects: porous medium degeneracy and fast diffusion. This is a multi-species expansion of a previously studied single species biofilm model. In this paper we prove the existence of solutions to this model and show in numerical simulations the effectiveness of the control mechanism.
Citation: Hassan Khassehkhan, Messoud A. Efendiev, Hermann J. Eberl. A degenerate diffusion-reaction model of an amensalistic biofilm control system: Existence and simulation of solutions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 371-388. doi: 10.3934/dcdsb.2009.12.371

Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036


Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355


Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991


Marco Ghimenti, A. M. Micheletti. Non degeneracy for solutions of singularly perturbed nonlinear elliptic problems on symmetric Riemannian manifolds. Communications on Pure & Applied Analysis, 2013, 12 (2) : 679-693. doi: 10.3934/cpaa.2013.12.679


Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683


Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826


Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048


Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637


Xiangrong Li, Vittorio Cristini, Qing Nie, John S. Lowengrub. Nonlinear three-dimensional simulation of solid tumor growth. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 581-604. doi: 10.3934/dcdsb.2007.7.581


Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021088


Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, 2021, 29 (4) : 2561-2597. doi: 10.3934/era.2021002


Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure & Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509


Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012


C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356


Feng Jiang, Hua Yang, Tianhai Tian. Property and numerical simulation of the Ait-Sahalia-Rho model with nonlinear growth conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 101-113. doi: 10.3934/dcdsb.2017005


Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466


Brandon Lindley, Qi Wang, Tianyu Zhang. A multicomponent model for biofilm-drug interaction. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 417-456. doi: 10.3934/dcdsb.2011.15.417


Hermann J. Eberl, Messoud A. Efendiev, Dariusz Wrzosek, Anna Zhigun. Analysis of a degenerate biofilm model with a nutrient taxis term. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 99-119. doi: 10.3934/dcds.2014.34.99


Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547


Yu-Xia Wang, Wan-Tong Li. Spatial degeneracy vs functional response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2811-2837. doi: 10.3934/dcdsb.2016074

2020 Impact Factor: 1.327


  • PDF downloads (65)
  • HTML views (0)
  • Cited by (14)

[Back to Top]