November  2009, 12(4): 671-692. doi: 10.3934/dcdsb.2009.12.671

Existence of travelling-wave solutions and local well-posedness of the Fowler equation

1. 

Institut de Mathématiques et Modélisation de Montpellier (I3M)-UMR 5149 CNRS, Université Montpellier 2, CC 051, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France, France

Received  May 2008 Revised  May 2009 Published  August 2009

We study the existence of travelling-waves and local well-posedness in a subspace of $C_b^1(\R)$ for a nonlinear evolution equation recently proposed by Andrew C. Fowler to describe the dynamics of dunes. The travelling-waves we obtained however, were more bore-like than solitary-wave-like.
Citation: Borys Alvarez-Samaniego, Pascal Azerad. Existence of travelling-wave solutions and local well-posedness of the Fowler equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 671-692. doi: 10.3934/dcdsb.2009.12.671
[1]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[2]

Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925

[3]

Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242

[4]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015

[5]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[6]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[7]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[8]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[9]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[10]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

[11]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[12]

Jiequan Li, Mária Lukáčová - MedviĎová, Gerald Warnecke. Evolution Galerkin schemes applied to two-dimensional Riemann problems for the wave equation system. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 559-576. doi: 10.3934/dcds.2003.9.559

[13]

Paolo Baiti, Alberto Bressan, Helge Kristian Jenssen. Instability of travelling wave profiles for the Lax-Friedrichs scheme. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 877-899. doi: 10.3934/dcds.2005.13.877

[14]

Arnaud Ducrot, Michel Langlais, Pierre Magal. Qualitative analysis and travelling wave solutions for the SI model with vertical transmission. Communications on Pure and Applied Analysis, 2012, 11 (1) : 97-113. doi: 10.3934/cpaa.2012.11.97

[15]

Claude-Michael Brauner, Josephus Hulshof, J.-F. Ripoll. Existence of travelling wave solutions in a combustion-radiation model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 193-208. doi: 10.3934/dcdsb.2001.1.193

[16]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic and Related Models, 2009, 2 (1) : 109-134. doi: 10.3934/krm.2009.2.109

[17]

Chunyan Zhao, Chengkui Zhong, Zhijun Tang. Asymptotic behavior of the wave equation with nonlocal weak damping, anti-damping and critical nonlinearity. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022025

[18]

Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529

[19]

Irene Benedetti, Valeri Obukhovskii, Valentina Taddei. Evolution fractional differential problems with impulses and nonlocal conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1899-1919. doi: 10.3934/dcdss.2020149

[20]

Víctor Manuel Jiménez, Manuel de León. The evolution equation: An application of groupoids to material evolution. Journal of Geometric Mechanics, 2022  doi: 10.3934/jgm.2022001

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]