# American Institute of Mathematical Sciences

January  2010, 13(1): 195-211. doi: 10.3934/dcdsb.2010.13.195

## Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models

 1 Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China

Received  January 2008 Revised  August 2009 Published  October 2009

A disease transmission model of SIRS type with latent period and nonlinear incidence rate is considered. Latent period is assumed to be a constant $\tau$, and the incidence rate is assumed to be of a specific nonlinear form, namely, $\frac{kI(t-\tau)S(t)}{1+\alpha I^{h}(t-\tau)}$, where $h\ge 1$. Stability of the disease-free equilibrium, and existence, uniqueness and stability of an endemic equilibrium for the model, are investigated. It is shown that, there exists the basic reproduction number $R_0$ which is independent of the form of the nonlinear incidence rate, if $R_0\le 1$, then the disease-free equilibrium is globally asymptotically stable, whereas if $R_0>1$, then the unique endemic equilibrium is globally asymptotically stable in the interior of the feasible region for the model in which there is no latency, and periodic solutions can arise by Hopf bifurcation from the endemic equilibrium for the model at a critical latency. Some numerical simulations are provided to support our analytical conclusions.
Citation: Yu Yang, Dongmei Xiao. Influence of latent period and nonlinear incidence rate on the dynamics of SIRS epidemiological models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 195-211. doi: 10.3934/dcdsb.2010.13.195
 [1] Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 93-112. doi: 10.3934/dcdsb.2011.15.93 [2] Qin Pan, Jicai Huang, Qihua Huang. Global dynamics and bifurcations in a SIRS epidemic model with a nonmonotone incidence rate and a piecewise-smooth treatment rate. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3533-3561. doi: 10.3934/dcdsb.2021195 [3] Min Lu, Chuang Xiang, Jicai Huang. Bogdanov-Takens bifurcation in a SIRS epidemic model with a generalized nonmonotone incidence rate. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3125-3138. doi: 10.3934/dcdss.2020115 [4] Yan Hong, Xiuxiang Liu, Xiao Yu. Global dynamics of a Huanglongbing model with a periodic latent period. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021302 [5] Yu Yang, Lan Zou, Tonghua Zhang, Yancong Xu. Dynamical analysis of a diffusive SIRS model with general incidence rate. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2433-2451. doi: 10.3934/dcdsb.2020017 [6] Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057 [7] Xuefeng San, Yuan He. Traveling waves for a two-group epidemic model with latent period and bilinear incidence in a patchy environment. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3299-3318. doi: 10.3934/cpaa.2021106 [8] Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 [9] Shouying Huang, Jifa Jiang. Global stability of a network-based SIS epidemic model with a general nonlinear incidence rate. Mathematical Biosciences & Engineering, 2016, 13 (4) : 723-739. doi: 10.3934/mbe.2016016 [10] Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 [11] Yu Yang, Yueping Dong, Yasuhiro Takeuchi. Global dynamics of a latent HIV infection model with general incidence function and multiple delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 783-800. doi: 10.3934/dcdsb.2018207 [12] Attila Dénes, Gergely Röst. Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1101-1117. doi: 10.3934/dcdsb.2016.21.1101 [13] Hong Yang, Junjie Wei. Global behaviour of a delayed viral kinetic model with general incidence rate. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1573-1582. doi: 10.3934/dcdsb.2015.20.1573 [14] Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6131-6154. doi: 10.3934/dcdsb.2021010 [15] Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 [16] Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051 [17] C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837 [18] Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051 [19] Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 [20] Ting Guo, Haihong Liu, Chenglin Xu, Fang Yan. Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4223-4242. doi: 10.3934/dcdsb.2018134

2021 Impact Factor: 1.497