March  2010, 13(2): 249-267. doi: 10.3934/dcdsb.2010.13.249

Bifurcation curves in discontinuous maps

1. 

University of Urbino, Department of Economics and Quantitative Methods, Via Saffi 42, 61029 Urbino, Italy, Italy

2. 

Marche Polytechnic University, Department of Economics, Piazzale Martelli 8, 60121 Ancona, Italy

Received  October 2008 Revised  February 2009 Published  December 2009

Several discrete-time dynamic models are ultimately expressed in the form of iterated piecewise linear functions, in one- or two- dimensional spaces. In this paper we study a one-dimensional map made up of three linear pieces which are separated by two discontinuity points, motivated by a dynamic model arising in social sciences. Starting from the bifurcation structure associated with one-dimensional maps with only one discontinuity point, we show how this is modified by the introduction of a second discontinuity point, and we give the analytic expressions of the bifurcation curves of the principal tongues (or tongues of first degree) for the family of maps considered, which depends on five parameters.
Citation: Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249
[1]

Iryna Sushko, Anna Agliari, Laura Gardini. Bistability and border-collision bifurcations for a family of unimodal piecewise smooth maps. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 881-897. doi: 10.3934/dcdsb.2005.5.881

[2]

Hun Ki Baek, Younghae Do. Dangerous Border-Collision bifurcations of a piecewise-smooth map. Communications on Pure and Applied Analysis, 2006, 5 (3) : 493-503. doi: 10.3934/cpaa.2006.5.493

[3]

Zhiying Qin, Jichen Yang, Soumitro Banerjee, Guirong Jiang. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 547-567. doi: 10.3934/dcdsb.2011.16.547

[4]

Laura Gardini, Roya Makrooni, Iryna Sushko. Cascades of alternating smooth bifurcations and border collision bifurcations with singularity in a family of discontinuous linear-power maps. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 701-729. doi: 10.3934/dcdsb.2018039

[5]

Miguel Mendes. A note on the coding of orbits in certain discontinuous maps. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 369-382. doi: 10.3934/dcds.2010.27.369

[6]

Thorsten Hüls. A model function for non-autonomous bifurcations of maps. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 351-363. doi: 10.3934/dcdsb.2007.7.351

[7]

Jianfei Cheng, Xiao Wang, Yicheng Liu. Collision-avoidance and flocking in the Cucker–Smale-type model with a discontinuous controller. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1733-1748. doi: 10.3934/dcdss.2021169

[8]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic and Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[9]

Antonio Pumariño, José Ángel Rodríguez, Joan Carles Tatjer, Enrique Vigil. Expanding Baker Maps as models for the dynamics emerging from 3D-homoclinic bifurcations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 523-541. doi: 10.3934/dcdsb.2014.19.523

[10]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[11]

Matthias Gerdts, René Henrion, Dietmar Hömberg, Chantal Landry. Path planning and collision avoidance for robots. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 437-463. doi: 10.3934/naco.2012.2.437

[12]

Claudia Totzeck. An anisotropic interaction model with collision avoidance. Kinetic and Related Models, 2020, 13 (6) : 1219-1242. doi: 10.3934/krm.2020044

[13]

Adriano Festa, Andrea Tosin, Marie-Therese Wolfram. Kinetic description of collision avoidance in pedestrian crowds by sidestepping. Kinetic and Related Models, 2018, 11 (3) : 491-520. doi: 10.3934/krm.2018022

[14]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[15]

Felipe Cucker, Jiu-Gang Dong. A conditional, collision-avoiding, model for swarming. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1009-1020. doi: 10.3934/dcds.2014.34.1009

[16]

G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118

[17]

Hany A. Hosham, Eman D Abou Elela. Discontinuous phenomena in bioreactor system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2955-2969. doi: 10.3934/dcdsb.2018294

[18]

Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159-179. doi: 10.3934/nhm.2007.2.159

[19]

Laetitia Paoli. Vibrations of a beam between stops: Collision events and energy balance properties. Evolution Equations and Control Theory, 2020, 9 (4) : 1133-1151. doi: 10.3934/eect.2020057

[20]

Helmut Maurer, Tanya Tarnopolskaya, Neale Fulton. Computation of bang-bang and singular controls in collision avoidance. Journal of Industrial and Management Optimization, 2014, 10 (2) : 443-460. doi: 10.3934/jimo.2014.10.443

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (6)

[Back to Top]