# American Institute of Mathematical Sciences

May  2010, 13(3): 665-684. doi: 10.3934/dcdsb.2010.13.665

## Fully discrete finite element method for the viscoelastic fluid motion equations

 1 Faculty of Science, Xi’an Jiaotong University, Xi’an 710049, China, China 2 Faculty of Science, Xi'an Jiaotong University, Xi'an 710049

Received  December 2008 Revised  November 2009 Published  February 2010

In this article, a fully discrete finite element method is considered for the viscoelastic fluid motion equations arising in the two-dimensional Oldroyd model. A finite element method is proposed for the spatial discretization and the time discretization is based on the backward Euler scheme. Moreover, the stability and optimal error estimates in the $L^2$- and $H^1$-norms for the velocity and $L^2$-norm for the pressure are derived for all time $t>0.$ Finally, some numerical experiments are shown to verify the theoretical predictions.
Citation: Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665
 [1] Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657 [2] Yang Liu. Long-time behavior of a class of viscoelastic plate equations. Electronic Research Archive, 2020, 28 (1) : 311-326. doi: 10.3934/era.2020018 [3] Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 [4] Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control and Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014 [5] Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583 [6] Hsueh-Chen Lee, Hyesuk Lee. An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows. Electronic Research Archive, 2021, 29 (4) : 2755-2770. doi: 10.3934/era.2021012 [7] Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675 [8] Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437 [9] Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873 [10] Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105 [11] Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Long-time behaviour of a thermomechanical model for adhesive contact. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 273-309. doi: 10.3934/dcdss.2011.4.273 [12] Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2201-2238. doi: 10.3934/dcdsb.2020360 [13] Lingbing He, Claude Le Bris, Tony Lelièvre. Periodic long-time behaviour for an approximate model of nematic polymers. Kinetic and Related Models, 2012, 5 (2) : 357-382. doi: 10.3934/krm.2012.5.357 [14] Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112 [15] Oscar Jarrín, Manuel Fernando Cortez. On the long-time behavior for a damped Navier-Stokes-Bardina model. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022028 [16] A. Kh. Khanmamedov. Long-time behaviour of doubly nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1373-1400. doi: 10.3934/cpaa.2009.8.1373 [17] H. A. Erbay, S. Erbay, A. Erkip. Long-time existence of solutions to nonlocal nonlinear bidirectional wave equations. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2877-2891. doi: 10.3934/dcds.2019119 [18] Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098 [19] Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041 [20] Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

2020 Impact Factor: 1.327