
Previous Article
Analysis of a predatorprey model with predators impulsively diffusing between two patches
 DCDSB Home
 This Issue

Next Article
A spectral collocation method for solving initial value problems of first order ordinary differential equations
Mathematical analysis of a kinetic model for cell movement in network tissues
1.  Department of Mathematical and Statistical Sciences, Centre for Mathematical Biology, University of Alberta, Edmonton, T6G 2G1 
2.  Department of Mathematical Sciences, University of Wisconsin – Milwaukee, P.O. Box 413, Milwaukee, WI 532010413, United States 
3.  Department of Mathematics, Vanderbilt University, Nashville, TN 37240, United States 
[1] 
Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic and Related Models, 2017, 10 (1) : 313327. doi: 10.3934/krm.2017013 
[2] 
Guillaume Bal, Tomasz Komorowski, Lenya Ryzhik. Kinetic limits for waves in a random medium. Kinetic and Related Models, 2010, 3 (4) : 529644. doi: 10.3934/krm.2010.3.529 
[3] 
Inmaculada Antón, Julián LópezGómez. Global bifurcation diagrams of steadystates for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 2130. doi: 10.3934/proc.2013.2013.21 
[4] 
Catherine Ha Ta, Qing Nie, Tian Hong. Controlling stochasticity in epithelialmesenchymal transition through multiple intermediate cellular states. Discrete and Continuous Dynamical Systems  B, 2016, 21 (7) : 22752291. doi: 10.3934/dcdsb.2016047 
[5] 
József Z. Farkas, Peter Hinow. Steady states in hierarchical structured populations with distributed states at birth. Discrete and Continuous Dynamical Systems  B, 2012, 17 (8) : 26712689. doi: 10.3934/dcdsb.2012.17.2671 
[6] 
Àngel Calsina, József Z. Farkas. Boundary perturbations and steady states of structured populations. Discrete and Continuous Dynamical Systems  B, 2019, 24 (12) : 66756691. doi: 10.3934/dcdsb.2019162 
[7] 
Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic and Related Models, 2013, 6 (2) : 429458. doi: 10.3934/krm.2013.6.429 
[8] 
Emmanuel Frénod, Mathieu Lutz. On the Geometrical GyroKinetic theory. Kinetic and Related Models, 2014, 7 (4) : 621659. doi: 10.3934/krm.2014.7.621 
[9] 
ZhiAn Wang. A kinetic chemotaxis model with internal states and temporal sensing. Kinetic and Related Models, 2022, 15 (1) : 2748. doi: 10.3934/krm.2021043 
[10] 
H.J. Hwang, K. Kang, A. Stevens. Driftdiffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems  B, 2005, 5 (2) : 319334. doi: 10.3934/dcdsb.2005.5.319 
[11] 
Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reactiondiffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 120. doi: 10.3934/dcds.2008.21.1 
[12] 
Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure and Applied Analysis, 2012, 11 (1) : 8396. doi: 10.3934/cpaa.2012.11.83 
[13] 
Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predatorprey model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 477485. doi: 10.3934/cpaa.2018026 
[14] 
Qian Xu. The stability of bifurcating steady states of several classes of chemotaxis systems. Discrete and Continuous Dynamical Systems  B, 2015, 20 (1) : 231248. doi: 10.3934/dcdsb.2015.20.231 
[15] 
Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled preypredator model. Conference Publications, 2005, 2005 (Special) : 173180. doi: 10.3934/proc.2005.2005.173 
[16] 
Jörg Weber. Confined steady states of the relativistic Vlasov–Maxwell system in an infinitely long cylinder. Kinetic and Related Models, 2020, 13 (6) : 11351161. doi: 10.3934/krm.2020040 
[17] 
Tian Xiang. A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete and Continuous Dynamical Systems  B, 2013, 18 (9) : 24572485. doi: 10.3934/dcdsb.2013.18.2457 
[18] 
Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steadystates for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467476. doi: 10.3934/proc.2013.2013.467 
[19] 
Miguel A. Herrero, Marianito R. Rodrigo. Remarks on accessible steady states for some coagulationfragmentation systems. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 541552. doi: 10.3934/dcds.2007.17.541 
[20] 
Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predatorprey model with diffusion. Communications on Pure and Applied Analysis, 2013, 12 (5) : 21892201. doi: 10.3934/cpaa.2013.12.2189 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]