\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation

Abstract Related Papers Cited by
  • Stability and dynamic bifurcation in the ac-driven complex Ginzburg-Landau (GL) equation with periodic boundary conditions and even constraint are investigated using central manifold reduction procedure and attractor bifurcation theory. The results show that the bifurcation into an attractor near a small-amplitude limit cycle takes place on a two dimensional central manifold, as bifurcation parameter crosses a critical value. Furthermore, the component of the bifurcated attractor is analytically described for the non-autonomous system.
    Mathematics Subject Classification: Primary: 35K20; Secondary: 37G10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return