-
Previous Article
Bifurcations of a discrete prey-predator model with Holling type II functional response
- DCDS-B Home
- This Issue
-
Next Article
Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation
Iterative building of Barabanov norms and computation of the joint spectral radius for matrix sets
1. | Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoj Karetny lane 19, Moscow 127994 GSP-4 |
[1] |
Xiongping Dai, Yu Huang, Mingqing Xiao. Realization of joint spectral radius via Ergodic theory. Electronic Research Announcements, 2011, 18: 22-30. doi: 10.3934/era.2011.18.22 |
[2] |
Chaoqian Li, Yaqiang Wang, Jieyi Yi, Yaotang Li. Bounds for the spectral radius of nonnegative tensors. Journal of Industrial and Management Optimization, 2016, 12 (3) : 975-990. doi: 10.3934/jimo.2016.12.975 |
[3] |
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277 |
[4] |
Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011 |
[5] |
Guimin Liu, Hongbin Lv. Bounds for spectral radius of nonnegative tensors using matrix-digragh-based approach. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021176 |
[6] |
Vladimir Müller, Aljoša Peperko. On the Bonsall cone spectral radius and the approximate point spectrum. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5337-5354. doi: 10.3934/dcds.2017232 |
[7] |
Rui Zou, Yongluo Cao, Gang Liao. Continuity of spectral radius over hyperbolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3977-3991. doi: 10.3934/dcds.2018173 |
[8] |
Vladimir Müller, Aljoša Peperko. Lower spectral radius and spectral mapping theorem for suprema preserving mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4117-4132. doi: 10.3934/dcds.2018179 |
[9] |
Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381 |
[10] |
Wen Jin, Horst R. Thieme. An extinction/persistence threshold for sexually reproducing populations: The cone spectral radius. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 447-470. doi: 10.3934/dcdsb.2016.21.447 |
[11] |
Carsten Burstedde. On the numerical evaluation of fractional Sobolev norms. Communications on Pure and Applied Analysis, 2007, 6 (3) : 587-605. doi: 10.3934/cpaa.2007.6.587 |
[12] |
Sébastien Gadat, Laurent Miclo. Spectral decompositions and $\mathbb{L}^2$-operator norms of toy hypocoercive semi-groups. Kinetic and Related Models, 2013, 6 (2) : 317-372. doi: 10.3934/krm.2013.6.317 |
[13] |
Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147 |
[14] |
Kai Zehmisch. The codisc radius capacity. Electronic Research Announcements, 2013, 20: 77-96. doi: 10.3934/era.2013.20.77 |
[15] |
Claude Carlet. Expressing the minimum distance, weight distribution and covering radius of codes by means of the algebraic and numerical normal forms of their indicators. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022047 |
[16] |
Giovanni Bellettini, Matteo Novaga, Shokhrukh Yusufovich Kholmatov. Minimizers of anisotropic perimeters with cylindrical norms. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1427-1454. doi: 10.3934/cpaa.2017068 |
[17] |
Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601 |
[18] |
François Lalonde, Yasha Savelyev. On the injectivity radius in Hofer's geometry. Electronic Research Announcements, 2014, 21: 177-185. doi: 10.3934/era.2014.21.177 |
[19] |
Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129 |
[20] |
Torsten Trimborn, Stephan Gerster, Giuseppe Visconti. Spectral methods to study the robustness of residual neural networks with infinite layers. Foundations of Data Science, 2020, 2 (3) : 257-278. doi: 10.3934/fods.2020012 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]