
Previous Article
A gradient flow scheme for nonlinear fourth order equations
 DCDSB Home
 This Issue

Next Article
Chaos and quasiperiodicity in diffeomorphisms of the solid torus
Evaporation law in kinetic gravitational systems described by simplified Landau models
1.  IRMAR, Université Rennes 1, Rennes, 35700, France, France, France 
2.  IRSAMC, Université Paul Sabatier, Toulouse, 31400, France 
[1] 
Evelyne Miot, Mario Pulvirenti, Chiara Saffirio. On the Kac model for the Landau equation. Kinetic and Related Models, 2011, 4 (1) : 333344. doi: 10.3934/krm.2011.4.333 
[2] 
Luca Biasco, Luigi Chierchia. Exponential stability for the resonant D'Alembert model of celestial mechanics. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 569594. doi: 10.3934/dcds.2005.12.569 
[3] 
SeungYeal Ha, Jinyeong Park, Xiongtao Zhang. A global wellposedness and asymptotic dynamics of the kinetic Winfree equation. Discrete and Continuous Dynamical Systems  B, 2020, 25 (4) : 13171344. doi: 10.3934/dcdsb.2019229 
[4] 
Daewa Kim, Annalisa Quaini. A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinetic and Related Models, 2019, 12 (6) : 12731296. doi: 10.3934/krm.2019049 
[5] 
Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic and Related Models, 2010, 3 (2) : 255279. doi: 10.3934/krm.2010.3.255 
[6] 
Charles Nguyen, Stephen Pankavich. A onedimensional kinetic model of plasma dynamics with a transport field. Evolution Equations and Control Theory, 2014, 3 (4) : 681698. doi: 10.3934/eect.2014.3.681 
[7] 
Shujuan Lü, Hong Lu, Zhaosheng Feng. Stochastic dynamics of 2D fractional GinzburgLandau equation with multiplicative noise. Discrete and Continuous Dynamical Systems  B, 2016, 21 (2) : 575590. doi: 10.3934/dcdsb.2016.21.575 
[8] 
Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex GinzburgLandau equation. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 25392564. doi: 10.3934/dcds.2017109 
[9] 
Feng Zhou, Chunyou Sun. Dynamics for the complex GinzburgLandau equation on noncylindrical domains I: The diffeomorphism case. Discrete and Continuous Dynamical Systems  B, 2016, 21 (10) : 37673792. doi: 10.3934/dcdsb.2016120 
[10] 
D. Blömker, S. MaierPaape, G. Schneider. The stochastic Landau equation as an amplitude equation. Discrete and Continuous Dynamical Systems  B, 2001, 1 (4) : 527541. doi: 10.3934/dcdsb.2001.1.527 
[11] 
Rong Yang, Li Chen. Meanfield limit for a collisionavoiding flocking system and the timeasymptotic flocking dynamics for the kinetic equation. Kinetic and Related Models, 2014, 7 (2) : 381400. doi: 10.3934/krm.2014.7.381 
[12] 
Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic FokkerPlanck and Landau equations with specular reflection boundary condition. Kinetic and Related Models, 2022, 15 (3) : 467516. doi: 10.3934/krm.2022003 
[13] 
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic and Related Models, 2008, 1 (4) : 591617. doi: 10.3934/krm.2008.1.591 
[14] 
Alessandra Celletti. Some KAM applications to Celestial Mechanics. Discrete and Continuous Dynamical Systems  S, 2010, 3 (4) : 533544. doi: 10.3934/dcdss.2010.3.533 
[15] 
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic and Related Models, 2021, 14 (3) : 541570. doi: 10.3934/krm.2021015 
[16] 
Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501528. doi: 10.3934/krm.2010.3.501 
[17] 
Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic and Related Models, 2014, 7 (1) : 109119. doi: 10.3934/krm.2014.7.109 
[18] 
Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure and Applied Analysis, 2009, 8 (6) : 18951916. doi: 10.3934/cpaa.2009.8.1895 
[19] 
Immanuel Ben Porat. Local conditional regularity for the Landau equation with Coulomb potential. Kinetic and Related Models, , () : . doi: 10.3934/krm.2022010 
[20] 
Hao Zhang, Kai Jiang, Pingwen Zhang. Dynamic transitions for LandauBrazovskii model. Discrete and Continuous Dynamical Systems  B, 2014, 19 (2) : 607627. doi: 10.3934/dcdsb.2014.19.607 
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]