-
Previous Article
On spatiotemporal pattern formation in a diffusive bimolecular model
- DCDS-B Home
- This Issue
-
Next Article
Traveling wave solutions for Lotka-Volterra system re-visited
Approximate tracking of periodic references in a class of bilinear systems via stable inversion
1. | Department of Applied Mathematics IV, Universitat Politècnica de Catalunya, Av. Víctor Balaguer, s/n, 08800 Vilanova i la Geltrú, Spain |
2. | Department of Applied Mathematics I, Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain |
References:
[1] |
F. Amato, C. Cosentino, A. S. Fiorillo and A. Merola, Stabilization of bilinear systems via linear state-feedback control, IEEE Trans. Circ. Syst.-II, 56 (2009), 76-80. |
[2] |
R. O. Cáceres and I. Barbi, A boost DC-AC converter: Analysis, design and experimentation, IEEE Trans. Power Electronics, 14 (1999), 134-141.
doi: doi:10.1109/63.737601. |
[3] |
M. Carpita and M. Marchesoni, Experimental study of a power conditioning system using sliding mode control, IEEE Trans. Power Electronics, 11 (1996), 731-742.
doi: doi:10.1109/63.535405. |
[4] |
D. Cortés, Jq. Álvarez, J. Álvarez and A. Fradkov, Tracking control of the boost converter, IEEE Proceedings Control Theory Applications, 151 (2004), 218-224.
doi: doi:10.1049/ip-cta:20040203. |
[5] |
S. Devasia, D. Chen and B. Paden, Nonlinear inversion-based output tracking, IEEE Trans. Automatic Control, 41 (1996), 930-942.
doi: doi:10.1109/9.508898. |
[6] |
D. L. Elliott, "Bilinear Control Systems. Matrices in Action," Springer, 2009. |
[7] | |
[8] |
E. Fossas and J. M. Olm, Asymptotic tracking in DC-to-DC nonlinear power converters, Discrete Continuous Dynam. Systems - B, 2 (2002), 295-307. |
[9] |
E. Fossas and J. M. Olm, Galerkin method and approximate tracking in a nonminimum phase bilinear system, Discrete Continuous Dynam. Systems - B, 7 (2007), 53-76. |
[10] |
E. Fossas and J. M. Olm, A functional iterative approach to the tracking control of nonminimum phase switched power converters, Math. Control Signals Syst., 21 (2009), 203-227.
doi: doi:10.1007/s00498-009-0044-5. |
[11] |
E. Fossas, J. M. Olm, A. Zinober and Y. Shtessel, Galerkin-based sliding mode tracking control of nonminimum phase DC-to-DC power converters, Internat. J. Robust Nonlinear Control, 17 (2007), 587-604.
doi: doi:10.1002/rnc.1136. |
[12] |
H. K. Khalil, "Nonlinear Systems," 3rd edition, Prentice Hall, 2002. |
[13] |
R. R. Mohler, "Nonlinear Systems, vol. 2: Applications to Bilinear Control," Prentice Hall, 1991. |
[14] |
J. M. Olm, "Asymptotic Tracking with DC-to-DC Bilinear Power Converters," Ph. D thesis, Universitat Politècnica de Catalunya, 2004. |
[15] |
J. M. Olm, X. Ros-Oton and Y. B. Shtessel, Stable inversion of Abel equations: application to tracking control in DC-DC nonminimum phase boost converters, Automatica, (2010), in press.
doi: doi:10.1109/CDC.2007.4434276. |
[16] |
A. Pavlov and K. Y. Pettersen, Stable inversion of non-minimum phase nonlinear systems: A convergent systems approach, in "Proceedings of the 46th IEEE Conference on Decision and Control," (2007), 3995-4000. |
[17] |
A. D. Polyanin, "Handbook of Exact Solutions for Ordinary Differential Equations," 2nd edition, Chapman & Hall/CRC, Boca Raton, 2003. |
[18] |
S. Sastry, "Nonlinear Systems. Analysis, Stability and Control," Springer-Verlag, 1999. |
[19] |
Y. Shtessel, A. Zinober and I. Shkolnikov, Sliding mode control of boost and buck-boost power converters control using method of stable system centre, Automatica, 39 (2003), 1061-1067.
doi: doi:10.1016/S0005-1098(03)00068-2. |
[20] |
H. Sira-Ramírez, Sliding motions in bilinear switched networks, IEEE Trans. Circ. Syst., 34 (1987), 1359-1390. |
[21] |
H. Sira-Ramírez, DC-to-AC power conversion on a 'boost' converter, Internat. J. Robust Nonlinear Control, 11 (2001), 589-600.
doi: doi:10.1002/rnc.575. |
[22] |
H. Sira-Ramírez, M. Spinetti-Rivera and E. Fossas, An algebraic parameter estimation approach to the adaptive observer-controller based regulation of the boost converter, in "Proceedings of the IEEE Int. Symp. Industrial Electronics," (2007), 3367-3372. |
[23] |
E. D. Sontag, Input to state stability: Basic concepts and results, in "Nonlinear and Optimal Control Theory" (eds. P. Nistri and G. Stefani), Springer-Verlag, (2007), 163-220. |
[24] |
E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Automatic Control, 41 (1996), 1283-1294.
doi: doi:10.1109/9.536498. |
show all references
References:
[1] |
F. Amato, C. Cosentino, A. S. Fiorillo and A. Merola, Stabilization of bilinear systems via linear state-feedback control, IEEE Trans. Circ. Syst.-II, 56 (2009), 76-80. |
[2] |
R. O. Cáceres and I. Barbi, A boost DC-AC converter: Analysis, design and experimentation, IEEE Trans. Power Electronics, 14 (1999), 134-141.
doi: doi:10.1109/63.737601. |
[3] |
M. Carpita and M. Marchesoni, Experimental study of a power conditioning system using sliding mode control, IEEE Trans. Power Electronics, 11 (1996), 731-742.
doi: doi:10.1109/63.535405. |
[4] |
D. Cortés, Jq. Álvarez, J. Álvarez and A. Fradkov, Tracking control of the boost converter, IEEE Proceedings Control Theory Applications, 151 (2004), 218-224.
doi: doi:10.1049/ip-cta:20040203. |
[5] |
S. Devasia, D. Chen and B. Paden, Nonlinear inversion-based output tracking, IEEE Trans. Automatic Control, 41 (1996), 930-942.
doi: doi:10.1109/9.508898. |
[6] |
D. L. Elliott, "Bilinear Control Systems. Matrices in Action," Springer, 2009. |
[7] | |
[8] |
E. Fossas and J. M. Olm, Asymptotic tracking in DC-to-DC nonlinear power converters, Discrete Continuous Dynam. Systems - B, 2 (2002), 295-307. |
[9] |
E. Fossas and J. M. Olm, Galerkin method and approximate tracking in a nonminimum phase bilinear system, Discrete Continuous Dynam. Systems - B, 7 (2007), 53-76. |
[10] |
E. Fossas and J. M. Olm, A functional iterative approach to the tracking control of nonminimum phase switched power converters, Math. Control Signals Syst., 21 (2009), 203-227.
doi: doi:10.1007/s00498-009-0044-5. |
[11] |
E. Fossas, J. M. Olm, A. Zinober and Y. Shtessel, Galerkin-based sliding mode tracking control of nonminimum phase DC-to-DC power converters, Internat. J. Robust Nonlinear Control, 17 (2007), 587-604.
doi: doi:10.1002/rnc.1136. |
[12] |
H. K. Khalil, "Nonlinear Systems," 3rd edition, Prentice Hall, 2002. |
[13] |
R. R. Mohler, "Nonlinear Systems, vol. 2: Applications to Bilinear Control," Prentice Hall, 1991. |
[14] |
J. M. Olm, "Asymptotic Tracking with DC-to-DC Bilinear Power Converters," Ph. D thesis, Universitat Politècnica de Catalunya, 2004. |
[15] |
J. M. Olm, X. Ros-Oton and Y. B. Shtessel, Stable inversion of Abel equations: application to tracking control in DC-DC nonminimum phase boost converters, Automatica, (2010), in press.
doi: doi:10.1109/CDC.2007.4434276. |
[16] |
A. Pavlov and K. Y. Pettersen, Stable inversion of non-minimum phase nonlinear systems: A convergent systems approach, in "Proceedings of the 46th IEEE Conference on Decision and Control," (2007), 3995-4000. |
[17] |
A. D. Polyanin, "Handbook of Exact Solutions for Ordinary Differential Equations," 2nd edition, Chapman & Hall/CRC, Boca Raton, 2003. |
[18] |
S. Sastry, "Nonlinear Systems. Analysis, Stability and Control," Springer-Verlag, 1999. |
[19] |
Y. Shtessel, A. Zinober and I. Shkolnikov, Sliding mode control of boost and buck-boost power converters control using method of stable system centre, Automatica, 39 (2003), 1061-1067.
doi: doi:10.1016/S0005-1098(03)00068-2. |
[20] |
H. Sira-Ramírez, Sliding motions in bilinear switched networks, IEEE Trans. Circ. Syst., 34 (1987), 1359-1390. |
[21] |
H. Sira-Ramírez, DC-to-AC power conversion on a 'boost' converter, Internat. J. Robust Nonlinear Control, 11 (2001), 589-600.
doi: doi:10.1002/rnc.575. |
[22] |
H. Sira-Ramírez, M. Spinetti-Rivera and E. Fossas, An algebraic parameter estimation approach to the adaptive observer-controller based regulation of the boost converter, in "Proceedings of the IEEE Int. Symp. Industrial Electronics," (2007), 3367-3372. |
[23] |
E. D. Sontag, Input to state stability: Basic concepts and results, in "Nonlinear and Optimal Control Theory" (eds. P. Nistri and G. Stefani), Springer-Verlag, (2007), 163-220. |
[24] |
E. D. Sontag and Y. Wang, New characterizations of input-to-state stability, IEEE Trans. Automatic Control, 41 (1996), 1283-1294.
doi: doi:10.1109/9.536498. |
[1] |
E. Fossas-Colet, J.M. Olm-Miras. Asymptotic tracking in DC-to-DC nonlinear power converters. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 295-307. doi: 10.3934/dcdsb.2002.2.295 |
[2] |
E. Fossas, J. M. Olm. Galerkin method and approximate tracking in a non-minimum phase bilinear system. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 53-76. doi: 10.3934/dcdsb.2007.7.53 |
[3] |
Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415 |
[4] |
Philippe Jouan, Said Naciri. Asymptotic stability of uniformly bounded nonlinear switched systems. Mathematical Control and Related Fields, 2013, 3 (3) : 323-345. doi: 10.3934/mcrf.2013.3.323 |
[5] |
Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4515-4522. doi: 10.3934/dcdsb.2020300 |
[6] |
Jianfeng Lv, Yan Gao, Na Zhao. The viability of switched nonlinear systems with piecewise smooth Lyapunov functions. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1825-1843. doi: 10.3934/jimo.2020048 |
[7] |
Jin-Zi Yang, Yuan-Xin Li, Ming Wei. Fuzzy adaptive asymptotic tracking of fractional order nonlinear systems with uncertain disturbances. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1615-1631. doi: 10.3934/dcdss.2021144 |
[8] |
Zhaohua Gong, Chongyang Liu, Yujing Wang. Optimal control of switched systems with multiple time-delays and a cost on changing control. Journal of Industrial and Management Optimization, 2018, 14 (1) : 183-198. doi: 10.3934/jimo.2017042 |
[9] |
K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050 |
[10] |
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial and Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016 |
[11] |
Ying Wu, Zhaohui Yuan, Yanpeng Wu. Optimal tracking control for networked control systems with random time delays and packet dropouts. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1343-1354. doi: 10.3934/jimo.2015.11.1343 |
[12] |
Lin Du, Yun Zhang. $\mathcal{H}_∞$ filtering for switched nonlinear systems: A state projection method. Journal of Industrial and Management Optimization, 2018, 14 (1) : 19-33. doi: 10.3934/jimo.2017035 |
[13] |
Uwe Schäfer, Marco Schnurr. A comparison of simple tests for accuracy of approximate solutions to nonlinear systems with uncertain data. Journal of Industrial and Management Optimization, 2006, 2 (4) : 425-434. doi: 10.3934/jimo.2006.2.425 |
[14] |
Huifang Jia, Gongbao Li, Xiao Luo. Stable standing waves for cubic nonlinear Schrödinger systems with partial confinement. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2739-2766. doi: 10.3934/dcds.2020148 |
[15] |
Mahdi Khajeh Salehani. Identification of generic stable dynamical systems taking a nonlinear differential approach. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4541-4555. doi: 10.3934/dcdsb.2018175 |
[16] |
Carl. T. Kelley, Liqun Qi, Xiaojiao Tong, Hongxia Yin. Finding a stable solution of a system of nonlinear equations arising from dynamic systems. Journal of Industrial and Management Optimization, 2011, 7 (2) : 497-521. doi: 10.3934/jimo.2011.7.497 |
[17] |
Moussa Balde, Ugo Boscain. Stability of planar switched systems: The nondiagonalizable case. Communications on Pure and Applied Analysis, 2008, 7 (1) : 1-21. doi: 10.3934/cpaa.2008.7.1 |
[18] |
El Hassan Zerrik, Nihale El Boukhari. Optimal bounded controls problem for bilinear systems. Evolution Equations and Control Theory, 2015, 4 (2) : 221-232. doi: 10.3934/eect.2015.4.221 |
[19] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3641-3657. doi: 10.3934/dcdss.2020434 |
[20] |
John B. Baena, Daniel Cabarcas, Javier Verbel. On the complexity of solving generic overdetermined bilinear systems. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021047 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]