• Previous Article
    Study on the stability and bifurcations of limit cycles in higher-dimensional nonlinear autonomous systems
  • DCDS-B Home
  • This Issue
  • Next Article
    Approximate tracking of periodic references in a class of bilinear systems via stable inversion
January  2011, 15(1): 217-230. doi: 10.3934/dcdsb.2011.15.217

On spatiotemporal pattern formation in a diffusive bimolecular model

1. 

Institute of Nonlinear Complex Systems, College of Science, China Three Gorges University, Yichang, 443002, Hubei, China

2. 

Department of Mathematics, Harbin Engineering University, Harbin, 150001, China

Received  December 2009 Revised  April 2010 Published  October 2010

This paper continues the analysis on a bimolecular autocatalytic reaction-diffusion model with saturation law. An improved result of steady state bifurcation is derived and the effect of various parameters on spatiotemporal patterns is discussed. Our analysis provides a better understanding on the rich spatiotemporal patterns. Some numerical simulations are performed to support the theoretical conclusions.
Citation: Rui Peng, Fengqi Yi. On spatiotemporal pattern formation in a diffusive bimolecular model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 217-230. doi: 10.3934/dcdsb.2011.15.217
References:
[1]

M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 245 (2007), 220-229. doi: doi:10.1016/j.jtbi.2006.09.036.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17 (1986), 1339-1353. doi: doi:10.1137/0517094.

[3]

L. L. Bonilla and M. G. Velarde, Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law, J. Math. Phys., 20 (1979), 2692-2703. doi: doi:10.1063/1.524034.

[4]

Y. Du, Uniqueness, multiplicity and stability for positive solutions of a pair of reaction-diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 777-809.

[5]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440. doi: doi:10.1006/jdeq.1997.3394.

[6]

Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349. doi: doi:10.1017/S0308210500000895.

[7]

Y. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, in "Nonlinear Dynamics and Evolution Equations," 95-135, Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 2006.

[8]

Y. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593. doi: doi:10.1090/S0002-9947-07-04262-6.

[9]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," Reprint of the 1998 edition, "Classics in Mathematics," Springer-Verlag, Berlin, 2001.

[10]

J. L. Ibanez and M. G. Velarde, Multiple steady states in a simple reaction-diffusion model with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law: The limit of large separation in the two diffusion constants, J. Math. Phys., 19 (1978), 151-156. doi: doi:10.1063/1.523532.

[11]

J. Jang, W. M. Ni and M. X. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320. doi: doi:10.1007/s10884-004-2782-x.

[12]

J. Y. Jin, J. P. Shi, J. J. Wei and F. Q. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, submitted for publication.

[13]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593. doi: doi:10.1137/0513037.

[14]

R. Peng, J. P. Shi and M. X. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488. doi: doi:10.1088/0951-7715/21/7/006.

[15]

R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886. doi: doi:10.1016/j.jde.2009.03.008.

[16]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513. doi: doi:10.1016/0022-1236(71)90030-9.

[17]

W. H. Ruan, Asymptotic behavior and positive steady-state solutions of a reaction-diffusion model with autocatalysis and saturation law, Nonlinear Anal: TMA, 21 (1993), 439-456. doi: doi:10.1016/0362-546X(93)90127-E.

[18]

J. P. Shi, Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models, Frontier of Mathematics in China, 4 (2009), 407-424. doi: doi:10.1007/s11464-009-0026-4.

[19]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812. doi: doi:10.1016/j.jde.2008.09.009.

[20]

Y. Su, J. Wei and J. P. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differential Equations, 247 (2009), 1156-1184. doi: doi:10.1016/j.jde.2009.04.017.

[21]

M. X. Wang, Non-constant positive steady states of the Sel'kov model, J. Differential Equations, 190 (2003), 600-620. doi: doi:10.1016/S0022-0396(02)00100-6.

[22]

F. Q. Yi, J. X. Liu and J. J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusibve bimolecular model, Nonl. Anal: RWA, 11 (2010), 3770-3781. doi: doi:10.1016/j.nonrwa.2010.02.007.

[23]

F. Q. Yi, J. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonl. Anal: RWA, 9 (2008), 1038-1051. doi: doi:10.1016/j.nonrwa.2010.02.007.

[24]

F. Q. Yi, J. J. Wei, J. P. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system, Appl. Math. Lett., 22 (2009), 52-55. doi: doi:10.1016/j.aml.2008.02.003.

[25]

F. Q. Yi, J. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977. doi: doi:10.1016/j.jde.2008.10.024.

show all references

References:
[1]

M. Baurmann, T. Gross and U. Feudel, Instabilities in spatially extended predator-prey systems: Spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 245 (2007), 220-229. doi: doi:10.1016/j.jtbi.2006.09.036.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17 (1986), 1339-1353. doi: doi:10.1137/0517094.

[3]

L. L. Bonilla and M. G. Velarde, Singular perturbations approach to the limit cycle and global patterns in a nonlinear diffusion-reaction problem with autocatalysis and saturation law, J. Math. Phys., 20 (1979), 2692-2703. doi: doi:10.1063/1.524034.

[4]

Y. Du, Uniqueness, multiplicity and stability for positive solutions of a pair of reaction-diffusion equations, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 777-809.

[5]

Y. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440. doi: doi:10.1006/jdeq.1997.3394.

[6]

Y. Du and Y. Lou, Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349. doi: doi:10.1017/S0308210500000895.

[7]

Y. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, in "Nonlinear Dynamics and Evolution Equations," 95-135, Fields Inst. Commun., 48, Amer. Math. Soc., Providence, RI, 2006.

[8]

Y. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593. doi: doi:10.1090/S0002-9947-07-04262-6.

[9]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equation of Second Order," Reprint of the 1998 edition, "Classics in Mathematics," Springer-Verlag, Berlin, 2001.

[10]

J. L. Ibanez and M. G. Velarde, Multiple steady states in a simple reaction-diffusion model with Michaelis-Menten (first-order Hinshelwood-Langmuir) saturation law: The limit of large separation in the two diffusion constants, J. Math. Phys., 19 (1978), 151-156. doi: doi:10.1063/1.523532.

[11]

J. Jang, W. M. Ni and M. X. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dynam. Differential Equations, 16 (2004), 297-320. doi: doi:10.1007/s10884-004-2782-x.

[12]

J. Y. Jin, J. P. Shi, J. J. Wei and F. Q. Yi, Bifurcations of patterned solutions in diffusive Lengyel-Epstein system of CIMA chemical reaction, submitted for publication.

[13]

Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593. doi: doi:10.1137/0513037.

[14]

R. Peng, J. P. Shi and M. X. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, Nonlinearity, 21 (2008), 1471-1488. doi: doi:10.1088/0951-7715/21/7/006.

[15]

R. Peng and J. P. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, J. Differential Equations, 247 (2009), 866-886. doi: doi:10.1016/j.jde.2009.03.008.

[16]

P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513. doi: doi:10.1016/0022-1236(71)90030-9.

[17]

W. H. Ruan, Asymptotic behavior and positive steady-state solutions of a reaction-diffusion model with autocatalysis and saturation law, Nonlinear Anal: TMA, 21 (1993), 439-456. doi: doi:10.1016/0362-546X(93)90127-E.

[18]

J. P. Shi, Bifurcation in infinite dimensional spaces and applications in spatiotemporal biological and chemical models, Frontier of Mathematics in China, 4 (2009), 407-424. doi: doi:10.1007/s11464-009-0026-4.

[19]

J. P. Shi and X. F. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, J. Differential Equations, 246 (2009), 2788-2812. doi: doi:10.1016/j.jde.2008.09.009.

[20]

Y. Su, J. Wei and J. P. Shi, Hopf bifurcations in a reaction-diffusion population model with delay effect, J. Differential Equations, 247 (2009), 1156-1184. doi: doi:10.1016/j.jde.2009.04.017.

[21]

M. X. Wang, Non-constant positive steady states of the Sel'kov model, J. Differential Equations, 190 (2003), 600-620. doi: doi:10.1016/S0022-0396(02)00100-6.

[22]

F. Q. Yi, J. X. Liu and J. J. Wei, Spatiotemporal pattern formation and multiple bifurcations in a diffusibve bimolecular model, Nonl. Anal: RWA, 11 (2010), 3770-3781. doi: doi:10.1016/j.nonrwa.2010.02.007.

[23]

F. Q. Yi, J. J. Wei and J. P. Shi, Diffusion-driven instability and bifurcation in the Lengyel-Epstein system, Nonl. Anal: RWA, 9 (2008), 1038-1051. doi: doi:10.1016/j.nonrwa.2010.02.007.

[24]

F. Q. Yi, J. J. Wei, J. P. Shi, Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system, Appl. Math. Lett., 22 (2009), 52-55. doi: doi:10.1016/j.aml.2008.02.003.

[25]

F. Q. Yi, J. J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977. doi: doi:10.1016/j.jde.2008.10.024.

[1]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[2]

Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182

[3]

Xueying Sun, Renhao Cui. Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4503-4520. doi: 10.3934/dcdss.2021120

[4]

Hongyan Zhang, Siyu Liu, Yue Zhang. Dynamics and spatiotemporal pattern formations of a homogeneous reaction-diffusion Thomas model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1149-1164. doi: 10.3934/dcdss.2017062

[5]

Aung Zaw Myint. Positive solutions of a diffusive two competitive species model with saturation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3625-3641. doi: 10.3934/dcdsb.2021199

[6]

Xun Cao, Xianyong Chen, Weihua Jiang. Bogdanov-Takens bifurcation with $ Z_2 $ symmetry and spatiotemporal dynamics in diffusive Rosenzweig-MacArthur model involving nonlocal prey competition. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 3747-3785. doi: 10.3934/dcds.2022031

[7]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[8]

Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132

[9]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[10]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[11]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure and Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

[12]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[13]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[14]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[15]

Xun Cao, Weihua Jiang. Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3461-3489. doi: 10.3934/dcdsb.2020069

[16]

Renji Han, Binxiang Dai, Lin Wang. Delay induced spatiotemporal patterns in a diffusive intraguild predation model with Beddington-DeAngelis functional response. Mathematical Biosciences & Engineering, 2018, 15 (3) : 595-627. doi: 10.3934/mbe.2018027

[17]

Zhijun Liu, Lianwen Wang, Ronghua Tan. Spatiotemporal dynamics for a diffusive HIV-1 infection model with distributed delays and CTL immune response. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2767-2790. doi: 10.3934/dcdsb.2021159

[18]

Daifeng Duan, Ben Niu, Junjie Wei. Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3683-3706. doi: 10.3934/dcdsb.2021202

[19]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[20]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]