January  2011, 15(1): 293-308. doi: 10.3934/dcdsb.2011.15.293

Analysis of a delayed free boundary problem for tumor growth

1. 

Department of Mathematics, Zhaoqing University, Zhaoqing, 526061, China

Received  December 2009 Revised  February 2010 Published  October 2010

In this paper we study a delayed free boundary problem for the growth of tumors. The establishment of the model is based on the diffusion of nutrient and mass conservation for the two process proliferation and apoptosis(cell death due to aging). It is assumed the process of proliferation is delayed compared to apoptosis. By $L^p$ theory of parabolic equations and the Banach fixed point theorem, we prove the existence and uniqueness of a local solutions and apply the continuation method to get the existence and uniqueness of a global solution. We also study the asymptotic behavior of the solution, and prove that in the case $c$ is sufficiently small, the volume of the tumor cannot expand unlimitedly. It will either disappear or evolve to a dormant state as $t\rightarrow\infty.$
Citation: Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293
References:
[1]

M. Bodnar, U. Forys, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472.

[2]

H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117. doi: doi:10.1016/S0025-5564(97)00023-0.

[3]

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: doi:10.1016/0025-5564(94)00117-3.

[4]

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216. doi: doi:10.1016/0025-5564(96)00023-5.

[5]

S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors, J. Math. Biol., 44 (2002), 395-426. doi: doi:10.1007/s002850100130.

[6]

S. Cui and A. Friedman, Analysis of a mathematical model of the effact of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137. doi: doi:10.1016/S0025-5564(99)00063-2.

[7]

S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082. doi: doi:10.1007/s10114-004-0483-3.

[8]

S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541. doi: doi:10.1016/j.jmaa.2007.02.047.

[9]

M. Dorie, R. Kallman, D. Rapacchietta and et al, Migration and internalization of cells and polystrene microspheres in tumor cell sphereoids, Exp. Cell Res., 141 (1982), 201-209. doi: doi:10.1016/0014-4827(82)90082-9.

[10]

U. Forys and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209. doi: doi:10.1016/S0895-7177(03)80019-5.

[11]

U. Forys and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196.

[12]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: doi:10.1007/s002850050149.

[13]

H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340.

[14]

H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: doi:10.1016/S0022-5193(76)80054-9.

[15]

J. Hale, "Theory of Functional Differential Equations," Springer-Verlag, New York, 1977.

[16]

M. J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model with two discrete delays, Math. and Compu. Modeling, 47 (2008), 597-603. doi: doi:10.1016/j.mcm.2007.02.030.

[17]

R. R. Sarkar and S. Banerjee, A time delay model for control of malignant tumor growth, National Conference on Nonlinear Systems and Dynamics, 2006, 1-4.

[18]

K. Thompson and H. Byrne, Modelling the internalisation of labelled cells in tumor spheroids, Bull. Math. Biol., 61 (1999), 601-623. doi: doi:10.1006/bulm.1999.0089.

[19]

J. Ward and J. King, Mathematical modelling of avascular-tumor growth II: Modelling growth saturation, IMA J. Math. Appl. Med. Biol., 15 (1998), 1-42.

[20]

X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free boundary problem modeling tumor growth (in chinese). Math. Acta. Scientia., 26A 2006, 1-8.

[21]

S. Xu, Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays, Chaos, Solitons & Fractals, 41 (2009), 2491-2494. doi: doi:10.1016/j.chaos.2008.09.029.

[22]

S. Xu, Hopf bifurcation of tumor growth under direct effect of inhibitors with two time delays, Inter. J. Appl. Math. Comput., 1 (2009), 97-103.

[23]

S. Xu, Analysis of tumor growth under direct effect of inhibitors with time delays in proliferation, Nonlinear Anal., 11 (2010), 401-406. doi: doi:10.1016/j.nonrwa.2008.11.002.

show all references

References:
[1]

M. Bodnar, U. Forys, Time delay in necrotic core formation, Math. Biosci. Eng., 2 (2005), 461-472.

[2]

H. Byrne, The effect of time delays on the dynamics of avascular tumor growth, Math. Biosci., 144 (1997), 83-117. doi: doi:10.1016/S0025-5564(97)00023-0.

[3]

H. Byrne and M. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Math. Biosci., 130 (1995), 151-181. doi: doi:10.1016/0025-5564(94)00117-3.

[4]

H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Math. Biosci., 135 (1996), 187-216. doi: doi:10.1016/0025-5564(96)00023-5.

[5]

S. Cui, Analysis of a mathematical model for the growth of tumors under the action of external inhibitors, J. Math. Biol., 44 (2002), 395-426. doi: doi:10.1007/s002850100130.

[6]

S. Cui and A. Friedman, Analysis of a mathematical model of the effact of inhibitors on the growth of tumors, Math. Biosci., 164 (2000), 103-137. doi: doi:10.1016/S0025-5564(99)00063-2.

[7]

S. Cui, Analysis of a free boundary problem modeling tumor growth, Acta. Math. Sinica., 21 (2005), 1071-1082. doi: doi:10.1007/s10114-004-0483-3.

[8]

S. Cui and S. Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, J. Math. Anal. Appl., 336 (2007), 523-541. doi: doi:10.1016/j.jmaa.2007.02.047.

[9]

M. Dorie, R. Kallman, D. Rapacchietta and et al, Migration and internalization of cells and polystrene microspheres in tumor cell sphereoids, Exp. Cell Res., 141 (1982), 201-209. doi: doi:10.1016/0014-4827(82)90082-9.

[10]

U. Forys and M. Bodnar, Time delays in proliferation process for solid avascular tumour, Math. Comput. Modelling, 37 (2003), 1201-1209. doi: doi:10.1016/S0895-7177(03)80019-5.

[11]

U. Forys and M. Kolev, Time delays in proliferation and apoptosis for solid avascular tumour, Mathematical Modelling of Population Dynamics, 63 (2004), 187-196.

[12]

A. Friedman and F. Reitich, Analysis of a mathematical model for the growth of tumors, J. Math. Biol., 38 (1999), 262-284. doi: doi:10.1007/s002850050149.

[13]

H. Greenspan, Models for the growth of solid tumor by diffusion, Stud. Appl. Math., 51 (1972), 317-340.

[14]

H. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theor. Biol., 56 (1976), 229-242. doi: doi:10.1016/S0022-5193(76)80054-9.

[15]

J. Hale, "Theory of Functional Differential Equations," Springer-Verlag, New York, 1977.

[16]

M. J. Piotrowska, Hopf bifurcation in a solid asascular tumor growth model with two discrete delays, Math. and Compu. Modeling, 47 (2008), 597-603. doi: doi:10.1016/j.mcm.2007.02.030.

[17]

R. R. Sarkar and S. Banerjee, A time delay model for control of malignant tumor growth, National Conference on Nonlinear Systems and Dynamics, 2006, 1-4.

[18]

K. Thompson and H. Byrne, Modelling the internalisation of labelled cells in tumor spheroids, Bull. Math. Biol., 61 (1999), 601-623. doi: doi:10.1006/bulm.1999.0089.

[19]

J. Ward and J. King, Mathematical modelling of avascular-tumor growth II: Modelling growth saturation, IMA J. Math. Appl. Med. Biol., 15 (1998), 1-42.

[20]

X. Wei and S. Cui, Existence and uniqueniss of global solutions of a free boundary problem modeling tumor growth (in chinese). Math. Acta. Scientia., 26A 2006, 1-8.

[21]

S. Xu, Hopf bifurcation of a free boundary problem modeling tumor growth with two time delays, Chaos, Solitons & Fractals, 41 (2009), 2491-2494. doi: doi:10.1016/j.chaos.2008.09.029.

[22]

S. Xu, Hopf bifurcation of tumor growth under direct effect of inhibitors with two time delays, Inter. J. Appl. Math. Comput., 1 (2009), 97-103.

[23]

S. Xu, Analysis of tumor growth under direct effect of inhibitors with time delays in proliferation, Nonlinear Anal., 11 (2010), 401-406. doi: doi:10.1016/j.nonrwa.2008.11.002.

[1]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure and Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[2]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625

[3]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[4]

Tingting Liu, Qiaozhen Ma. Time-dependent asymptotic behavior of the solution for plate equations with linear memory. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4595-4616. doi: 10.3934/dcdsb.2018178

[5]

P. R. Zingano. Asymptotic behavior of the $L^1$ norm of solutions to nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 151-159. doi: 10.3934/cpaa.2004.3.151

[6]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[7]

Caihong Chang, Qiangchang Ju, Zhengce Zhang. Asymptotic behavior of global solutions to a class of heat equations with gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5991-6014. doi: 10.3934/dcds.2020256

[8]

Fujun Zhou, Junde Wu, Shangbin Cui. Existence and asymptotic behavior of solutions to a moving boundary problem modeling the growth of multi-layer tumors. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1669-1688. doi: 10.3934/cpaa.2009.8.1669

[9]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[10]

Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160-169. doi: 10.3934/proc.2007.2007.160

[11]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[12]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[13]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure and Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[14]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[15]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[16]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[17]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[18]

Ling Mi. Asymptotic behavior for the unique positive solution to a singular elliptic problem. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1053-1072. doi: 10.3934/cpaa.2015.14.1053

[19]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[20]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (142)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]