American Institute of Mathematical Sciences

March  2011, 15(2): 325-341. doi: 10.3934/dcdsb.2011.15.325

An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems

 1 School of Mathematical Sciences, Shandong Normal University, Jinan 250014, China, China 2 Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208, United States 3 Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China

Received  February 2010 Revised  April 2010 Published  December 2010

In this paper we prove an optimal-order error estimate for a family of characteristic mixed method with arbitrary degree of mixed finite element approximations for the numerical solution of transient convection diffusion equations. This paper generalizes the results in [1, 61]. The proof of the main results is carried out via three lemmas, which are utilized to overcome the difficulties arising from the combination of MMOC and mixed finite element methods. Numerical experiments are presented to justify the theoretical analysis.
Citation: Huan-Zhen Chen, Zhao-Jie Zhou, Hong Wang, Hong-Ying Man. An optimal-order error estimate for a family of characteristic-mixed methods to transient convection-diffusion problems. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 325-341. doi: 10.3934/dcdsb.2011.15.325
References:
 [1] T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404-424. doi: 10.1137/0732017. [2] D. N. Arnolds, L. R. Scott and M. Vogelus, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygonal, Ann. Scuola. Norm. Sup. Pisa, Cl. Sci-serie. IVXV, 1988, 169-192. [3] M. Bause and P. Knabner, Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems, SIAM J. Numer. Anal., 39 (2002), 1954-1984 (electronic). doi: 10.1137/S0036142900367478. [4] J. P. Benque and J. Ronat, Quelques difficulties des modeles numeriques en hydraulique, Comp. Meth. Appl. Mech. Engrg., Glowinski and Lions (eds.), North-Holland, 1982, 471-494. [5] P. J. Binning and M. A. Celia, A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase flow systems, Water Resour. Res., 32 (1996), 103-114. doi: 10.1029/95WR02763. [6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8 (1974), 129-151. [7] F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991. [8] M. A. Celia, T. F. Russell, I. Herrera and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13 (1990), 187-206. doi: 10.1016/0309-1708(90)90041-2. [9] Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), 2509-2538. doi: 10.1016/S0045-7825(01)00411-X. [10] Z. Chen, S.-H. Chou and D. Y. Kwak, Characteristic-mixed covolume methods for advection-dominated diffusion problems, Numerical Linear Algebra with Applications, 13 (2006), 677-697. doi: 10.1002/nla.492. [11] P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1016/S0168-2024(08)70178-4. [12] H. K. Dahle, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear convection-diffusion equation, Comp. Meth. Appl. Mech. Engrg., 122 (1995), 223-250. doi: 10.1016/0045-7825(94)00733-4. [13] C. N. Dawson, T. F. Russell and M. F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal., 26 (1989), 1487-1512. doi: 10.1137/0726087. [14] J. Douglas Jr., F. Furtado and F. Pereira, On the numerical simulation of water flooding of hetergeneous petroleum reserviors, Comput. Geosci., 1 (1997), 155-190. doi: 10.1023/A:1011565228179. [15] J. Douglas, Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection, Numer. Math., 83 (1999), 353-369. doi: 10.1007/s002110050453. [16] J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885. doi: 10.1137/0719063. [17] M. S. Espedal and R. E. Ewing, Characteristic Petrov-Galerkin subdomain methods for two-phase immiscible flow, Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Comp. Meth. Appl. Mech. Engrg., 64 (1987), 113-135. [18] L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, V. 19, American Mathematical Society, Providence, RI, 1998. [19] R. E. Ewing (Ed.), "The Mathematics of Reservoir Simulation," Research Frontiers in Applied Mathematics 1, SIAM, Philadelphia, 1984. [20] R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Engrg., 47 (1984), 73-92. doi: 10.1016/0045-7825(84)90048-3. [21] A. O. Garder, D. W. Peaceman and A. L. Pozzi, Numerical calculations of multidimensional miscible displacement by the method of characteristics, Soc. Pet. Eng. J., 4 (1964), 26-36. [22] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. [23] R. W. Healy and T. F. Russell, A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation, Water Resour. Res., 29 (1993), 2399-2413. doi: 10.1029/93WR00403. [24] R. W. Healy and T. F. Russell, Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Res., 21 (1998), 11-26 [25] J. M. Hervouet, Applications of the method of characteristics in their weak formulation to solving two-dimensional advection-equations on mesh grids, in "Computational Techniques for Fluid Flow," Recent Advances in Numerical Methods in Fluids, 5, Taylor et al. (eds.), Pineidge Press, 1986, 149-185. [26] C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numer., 15 (1981), 41-78. [27] X. Li, W. Wu and O. C. Zienkiewicz, Implicit characteristic Galerkin method for convection-diffusion equations, Int. J. Numer. Meth. Engrg., 47 (2000), 1689-1708. doi: 10.1002/(SICI)1097-0207(20000410)47:10<1689::AID-NME850>3.0.CO;2-W. [28] K. W. Morton, A. Priestley and E. Süli, Stability of the Lagrangian-Galerkin method with nonexact integration, RAIRO Model. Math. Anal. Num., 22 (1988), 625-653. [29] J. C. Nédélec, A new family of mixed finite elements in $\mathbf R^3$, Numerische Mathematik, 50 (1986), 57-81. doi: 10.1007/BF01389668. [30] S. P. Neuman, An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids, J. Comp. Phys., 41 (1981), 270-294. doi: 10.1016/0021-9991(81)90097-8. [31] D. W. Peaceman, "Fundamentals of Numerical Reservoir Simulation," Elsevier, Amsterdam, 1977. [32] G. F. Pinder and H. H. Cooper, A numerical technique for calculating the transient position of the saltwater front, Water Resou. Res., 1970, 875-882. [33] O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38 (1981/82), 309-332. doi: 10.1007/BF01396435. [34] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), 292-315, Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977. [35] H.-G. Roos, M. Stynes and L. Tobiska, "Numerical Methods for Singularly Perturbed Differential Equations," Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996. [36] E. Varoglu and W. D. L. Finn, Finite elements incorporating characteristics for one-dimensional diffusion-convection equation, J. Comput. Phys., 34 (1980), 371-389. doi: 10.1016/0021-9991(80)90095-9. [37] H. Wang, A family of ELLAM schemes for advection-diffusion-reaction equations and their convergence analyses, Numerical Methods for PDEs, 14 (1998), 739-780. [38] H. Wang, An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1338-1368 (electronic). doi: 10.1137/S0036142998335686. [39] H. Wang, An optimal-order error estimate for MMOC and MMOCAA schemes for multidimensional advection-reaction equations, Numerical Methods for PDEs, 18 (2002), 69-84. [40] H. Wang, An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow, SIAM J. Numer. Anal., 46 (2008), 2133-2152, doi: 10.1137/S0036142903428281. [41] H. Wang and M. Al-Lawatia, A locally conservative Eulerian-Lagrangian control-volume method for transient advection-diffusion equations, Numerical Methods for Partial Differential Equations, 22 (2005), 577-599. doi: 10.1002/num.20106. [42] H. Wang, H. K. Dahle, R. E. Ewing, M. S. Espedal, R. C. Sharpley and S. Man, An ELLAM scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput., 20 (1999), 2160-2194 (electronic). doi: 10.1137/S1064827596309396. [43] H. Wang, R. E. Ewing, G. Qin and S. L. Lyons, "An Eulerian-Lagrangian Formulation for Compositional Flow in Porous Media," The 2006 Society of Petroleum Engineering Annual Technical Conference in San Antonio, SPE - 102512, Sept 24-27, 2006. [44] H. Wang, R. E. Ewing, G. Qin, S. L. Lyons, M. Al-Lawatia and S. Man, A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. Comput. Phys., 152 (1999), 120-163. doi: 10.1006/jcph.1999.6239. [45] H. Wang, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal., 15 (1995), 405-459. doi: 10.1093/imanum/15.3.405. [46] H. Wang, X. Shi and R. E. Ewing, An ELLAM scheme for multidimensional advection-reaction equations and its optimal-order error estimate, SIAM. J. Numer. Anal., 38 (2001), 1846-1885 (electronic). doi: 10.1137/S0036142999362389. [47] H. Wang and K. Wang, Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems, SIAM J. Numer. Anal., 45 (2007), 1305-1329. doi: 10.1137/060652816. [48] K. Wang, A uniformly optimal-order error estimate of an ELLAM scheme for unstady-state advection-diffusion equations, International Journal of Numerical Analysis and Modeling, 5 (2008), 286-302. [49] K. Wang, An optimal-order estimate for MMOC-MFEM approximations to porous medium flow, Numer. Methods for Partial Differential Equations, 25 (2008), 1283-1302. doi: 10.1002/num.20397. [50] K. Wang, A uniform optimal-order estimate for an Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 25 (2009), 87-109. doi: 10.1002/num.20338. [51] K. Wang and H. Wang, A uniform estimate for the ELLAM scheme for transport equations, Numer. Methods for PDEs, 24 (2008), 535-554. [52] K. Wang and H. Wang, An optimal-order error estimate to the modified method of characteristics for a degenerate convection-diffusion equation, International Journal of Numerical Analysis and Modeling, 6 (2009), 217-231. [53] K. Wang and H. Wang, A uniform estimate for the MMOC for two-dimensional advection-diffusion equations, Numer. Methods for PDEs, 26 (2010), 1054-1069. [54] K. Wang, H. Wang and M. Al-Lawatia, An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 23 (2007), 1343-1367. doi: 10.1002/num.20223. [55] K. Wang, H. Wang and M. Al-Lawatia, A CFL-free explicit characteristic interior penalty scheme for linear advection-reaction equations, Numer. Methods for PDEs, 26 (2010), 561-595. [56] K. Wang, H. Wang, M. Al-Lawatia and H. Rui, A family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations and their optimal-order $L^2$ error estimates, Commun. Comput. Phys., 6 (2009), 203-230. doi: 10.4208/cicp.2009.v6.p203. [57] M. F. Wheeler and C. N. Dawson, An operator-splitting method for advection-diffusion-reaction problems, MAFELAP Proceedings, 6, (Whiteman ed.), Academic Press, 1988, 463-482. [58] L. Wu and H. Wang, An Eulerian-Lagrangian single-node collocation method for transient advection-diffusion equations in multiple space dimensions, Numerical Methods for Partial Differential Equations, 20 (2004), 284-301. doi: 10.1002/num.10094. [59] L. Wu, H. Wang and G. F. Pinder, A nonconventional Eulerian-Lagrangian single-node collocation method with Hermite polynomials for unsteady-state advection-diffusion equations, Numerical Methods for PDEs, 19 (2003), 271-283. [60] L. Wu and K. Wang, A single-node characteristic collocation method for unsteady-state convection-diffusion equations in three-dimensional spaces, Numerical Methods for PDEs. doi: 10.1002/num.20552. [61] D. Yang, A characteristic mixed method with dynamic finite-element space for convection-dominated diffusion problems, J. Computational and Applied mathematics, 43 (1992), 343-353. doi: 10.1016/0377-0427(92)90020-X.

show all references

References:
 [1] T. Arbogast and M. F. Wheeler, A characteristics-mixed finite element method for advection-dominated transport problems, SIAM J. Numer. Anal., 32 (1995), 404-424. doi: 10.1137/0732017. [2] D. N. Arnolds, L. R. Scott and M. Vogelus, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygonal, Ann. Scuola. Norm. Sup. Pisa, Cl. Sci-serie. IVXV, 1988, 169-192. [3] M. Bause and P. Knabner, Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems, SIAM J. Numer. Anal., 39 (2002), 1954-1984 (electronic). doi: 10.1137/S0036142900367478. [4] J. P. Benque and J. Ronat, Quelques difficulties des modeles numeriques en hydraulique, Comp. Meth. Appl. Mech. Engrg., Glowinski and Lions (eds.), North-Holland, 1982, 471-494. [5] P. J. Binning and M. A. Celia, A finite volume Eulerian-Lagrangian localized adjoint method for solution of the contaminant transport equations in two-dimensional multi-phase flow systems, Water Resour. Res., 32 (1996), 103-114. doi: 10.1029/95WR02763. [6] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal. Numér., 8 (1974), 129-151. [7] F. Brezzi and M. Fortin, "Mixed and Hybrid Finite Element Methods," Springer Series in Computational Mathematics, 15, Springer-Verlag, New York, 1991. [8] M. A. Celia, T. F. Russell, I. Herrera and R. E. Ewing, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Advances in Water Resources, 13 (1990), 187-206. doi: 10.1016/0309-1708(90)90041-2. [9] Z. Chen, Characteristic mixed discontinuous finite element methods for advection-dominated diffusion problems, Comput. Methods Appl. Mech. Engrg., 191 (2002), 2509-2538. doi: 10.1016/S0045-7825(01)00411-X. [10] Z. Chen, S.-H. Chou and D. Y. Kwak, Characteristic-mixed covolume methods for advection-dominated diffusion problems, Numerical Linear Algebra with Applications, 13 (2006), 677-697. doi: 10.1002/nla.492. [11] P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. doi: 10.1016/S0168-2024(08)70178-4. [12] H. K. Dahle, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized adjoint methods for a nonlinear convection-diffusion equation, Comp. Meth. Appl. Mech. Engrg., 122 (1995), 223-250. doi: 10.1016/0045-7825(94)00733-4. [13] C. N. Dawson, T. F. Russell and M. F. Wheeler, Some improved error estimates for the modified method of characteristics, SIAM J. Numer. Anal., 26 (1989), 1487-1512. doi: 10.1137/0726087. [14] J. Douglas Jr., F. Furtado and F. Pereira, On the numerical simulation of water flooding of hetergeneous petroleum reserviors, Comput. Geosci., 1 (1997), 155-190. doi: 10.1023/A:1011565228179. [15] J. Douglas, Jr., C.-S. Huang and F. Pereira, The modified method of characteristics with adjusted advection, Numer. Math., 83 (1999), 353-369. doi: 10.1007/s002110050453. [16] J. Douglas, Jr. and T. F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), 871-885. doi: 10.1137/0719063. [17] M. S. Espedal and R. E. Ewing, Characteristic Petrov-Galerkin subdomain methods for two-phase immiscible flow, Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), Comp. Meth. Appl. Mech. Engrg., 64 (1987), 113-135. [18] L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, V. 19, American Mathematical Society, Providence, RI, 1998. [19] R. E. Ewing (Ed.), "The Mathematics of Reservoir Simulation," Research Frontiers in Applied Mathematics 1, SIAM, Philadelphia, 1984. [20] R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comput. Methods Appl. Mech. Engrg., 47 (1984), 73-92. doi: 10.1016/0045-7825(84)90048-3. [21] A. O. Garder, D. W. Peaceman and A. L. Pozzi, Numerical calculations of multidimensional miscible displacement by the method of characteristics, Soc. Pet. Eng. J., 4 (1964), 26-36. [22] D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983. [23] R. W. Healy and T. F. Russell, A finite-volume Eulerian-Lagrangian localized adjoint method for solution of the advection-dispersion equation, Water Resour. Res., 29 (1993), 2399-2413. doi: 10.1029/93WR00403. [24] R. W. Healy and T. F. Russell, Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Res., 21 (1998), 11-26 [25] J. M. Hervouet, Applications of the method of characteristics in their weak formulation to solving two-dimensional advection-equations on mesh grids, in "Computational Techniques for Fluid Flow," Recent Advances in Numerical Methods in Fluids, 5, Taylor et al. (eds.), Pineidge Press, 1986, 149-185. [26] C. Johnson and V. Thomée, Error estimates for some mixed finite element methods for parabolic type problems, RAIRO Anal. Numer., 15 (1981), 41-78. [27] X. Li, W. Wu and O. C. Zienkiewicz, Implicit characteristic Galerkin method for convection-diffusion equations, Int. J. Numer. Meth. Engrg., 47 (2000), 1689-1708. doi: 10.1002/(SICI)1097-0207(20000410)47:10<1689::AID-NME850>3.0.CO;2-W. [28] K. W. Morton, A. Priestley and E. Süli, Stability of the Lagrangian-Galerkin method with nonexact integration, RAIRO Model. Math. Anal. Num., 22 (1988), 625-653. [29] J. C. Nédélec, A new family of mixed finite elements in $\mathbf R^3$, Numerische Mathematik, 50 (1986), 57-81. doi: 10.1007/BF01389668. [30] S. P. Neuman, An Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids, J. Comp. Phys., 41 (1981), 270-294. doi: 10.1016/0021-9991(81)90097-8. [31] D. W. Peaceman, "Fundamentals of Numerical Reservoir Simulation," Elsevier, Amsterdam, 1977. [32] G. F. Pinder and H. H. Cooper, A numerical technique for calculating the transient position of the saltwater front, Water Resou. Res., 1970, 875-882. [33] O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations, Numer. Math., 38 (1981/82), 309-332. doi: 10.1007/BF01396435. [34] P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), 292-315, Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977. [35] H.-G. Roos, M. Stynes and L. Tobiska, "Numerical Methods for Singularly Perturbed Differential Equations," Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics, 24, Springer-Verlag, Berlin, 1996. [36] E. Varoglu and W. D. L. Finn, Finite elements incorporating characteristics for one-dimensional diffusion-convection equation, J. Comput. Phys., 34 (1980), 371-389. doi: 10.1016/0021-9991(80)90095-9. [37] H. Wang, A family of ELLAM schemes for advection-diffusion-reaction equations and their convergence analyses, Numerical Methods for PDEs, 14 (1998), 739-780. [38] H. Wang, An optimal-order error estimate for an ELLAM scheme for two-dimensional linear advection-diffusion equations, SIAM J. Numer. Anal., 37 (2000), 1338-1368 (electronic). doi: 10.1137/S0036142998335686. [39] H. Wang, An optimal-order error estimate for MMOC and MMOCAA schemes for multidimensional advection-reaction equations, Numerical Methods for PDEs, 18 (2002), 69-84. [40] H. Wang, An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow, SIAM J. Numer. Anal., 46 (2008), 2133-2152, doi: 10.1137/S0036142903428281. [41] H. Wang and M. Al-Lawatia, A locally conservative Eulerian-Lagrangian control-volume method for transient advection-diffusion equations, Numerical Methods for Partial Differential Equations, 22 (2005), 577-599. doi: 10.1002/num.20106. [42] H. Wang, H. K. Dahle, R. E. Ewing, M. S. Espedal, R. C. Sharpley and S. Man, An ELLAM scheme for advection-diffusion equations in two dimensions, SIAM J. Sci. Comput., 20 (1999), 2160-2194 (electronic). doi: 10.1137/S1064827596309396. [43] H. Wang, R. E. Ewing, G. Qin and S. L. Lyons, "An Eulerian-Lagrangian Formulation for Compositional Flow in Porous Media," The 2006 Society of Petroleum Engineering Annual Technical Conference in San Antonio, SPE - 102512, Sept 24-27, 2006. [44] H. Wang, R. E. Ewing, G. Qin, S. L. Lyons, M. Al-Lawatia and S. Man, A family of Eulerian-Lagrangian localized adjoint methods for multi-dimensional advection-reaction equations, J. Comput. Phys., 152 (1999), 120-163. doi: 10.1006/jcph.1999.6239. [45] H. Wang, R. E. Ewing and T. F. Russell, Eulerian-Lagrangian localized methods for convection-diffusion equations and their convergence analysis, IMA J. Numer. Anal., 15 (1995), 405-459. doi: 10.1093/imanum/15.3.405. [46] H. Wang, X. Shi and R. E. Ewing, An ELLAM scheme for multidimensional advection-reaction equations and its optimal-order error estimate, SIAM. J. Numer. Anal., 38 (2001), 1846-1885 (electronic). doi: 10.1137/S0036142999362389. [47] H. Wang and K. Wang, Uniform estimates for Eulerian-Lagrangian methods for singularly perturbed time-dependent problems, SIAM J. Numer. Anal., 45 (2007), 1305-1329. doi: 10.1137/060652816. [48] K. Wang, A uniformly optimal-order error estimate of an ELLAM scheme for unstady-state advection-diffusion equations, International Journal of Numerical Analysis and Modeling, 5 (2008), 286-302. [49] K. Wang, An optimal-order estimate for MMOC-MFEM approximations to porous medium flow, Numer. Methods for Partial Differential Equations, 25 (2008), 1283-1302. doi: 10.1002/num.20397. [50] K. Wang, A uniform optimal-order estimate for an Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 25 (2009), 87-109. doi: 10.1002/num.20338. [51] K. Wang and H. Wang, A uniform estimate for the ELLAM scheme for transport equations, Numer. Methods for PDEs, 24 (2008), 535-554. [52] K. Wang and H. Wang, An optimal-order error estimate to the modified method of characteristics for a degenerate convection-diffusion equation, International Journal of Numerical Analysis and Modeling, 6 (2009), 217-231. [53] K. Wang and H. Wang, A uniform estimate for the MMOC for two-dimensional advection-diffusion equations, Numer. Methods for PDEs, 26 (2010), 1054-1069. [54] K. Wang, H. Wang and M. Al-Lawatia, An Eulerian-Lagrangian discontinuous Galerkin method for transient advection-diffusion equations, Numer. Methods for Partial Differential Equations, 23 (2007), 1343-1367. doi: 10.1002/num.20223. [55] K. Wang, H. Wang and M. Al-Lawatia, A CFL-free explicit characteristic interior penalty scheme for linear advection-reaction equations, Numer. Methods for PDEs, 26 (2010), 561-595. [56] K. Wang, H. Wang, M. Al-Lawatia and H. Rui, A family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations and their optimal-order $L^2$ error estimates, Commun. Comput. Phys., 6 (2009), 203-230. doi: 10.4208/cicp.2009.v6.p203. [57] M. F. Wheeler and C. N. Dawson, An operator-splitting method for advection-diffusion-reaction problems, MAFELAP Proceedings, 6, (Whiteman ed.), Academic Press, 1988, 463-482. [58] L. Wu and H. Wang, An Eulerian-Lagrangian single-node collocation method for transient advection-diffusion equations in multiple space dimensions, Numerical Methods for Partial Differential Equations, 20 (2004), 284-301. doi: 10.1002/num.10094. [59] L. Wu, H. Wang and G. F. Pinder, A nonconventional Eulerian-Lagrangian single-node collocation method with Hermite polynomials for unsteady-state advection-diffusion equations, Numerical Methods for PDEs, 19 (2003), 271-283. [60] L. Wu and K. Wang, A single-node characteristic collocation method for unsteady-state convection-diffusion equations in three-dimensional spaces, Numerical Methods for PDEs. doi: 10.1002/num.20552. [61] D. Yang, A characteristic mixed method with dynamic finite-element space for convection-dominated diffusion problems, J. Computational and Applied mathematics, 43 (1992), 343-353. doi: 10.1016/0377-0427(92)90020-X.
 [1] Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 [2] M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525 [3] Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial and Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927 [4] Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59 [5] Jérôme Droniou. Remarks on discretizations of convection terms in Hybrid mimetic mixed methods. Networks and Heterogeneous Media, 2010, 5 (3) : 545-563. doi: 10.3934/nhm.2010.5.545 [6] Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807 [7] Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641 [8] Youngmok Jeon, Eun-Jae Park. Cell boundary element methods for convection-diffusion equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 309-319. doi: 10.3934/cpaa.2006.5.309 [9] Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496 [10] Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5217-5226. doi: 10.3934/dcdsb.2020340 [11] Ferdinando Auricchio, Lourenco Beirão da Veiga, Josef Kiendl, Carlo Lovadina, Alessandro Reali. Isogeometric collocation mixed methods for rods. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 33-42. doi: 10.3934/dcdss.2016.9.33 [12] Qun Lin, Hehu Xie. Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Problems and Imaging, 2013, 7 (3) : 795-811. doi: 10.3934/ipi.2013.7.795 [13] Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 [14] Qingguang Guan. Some estimates of virtual element methods for fourth order problems. Electronic Research Archive, 2021, 29 (6) : 4099-4118. doi: 10.3934/era.2021074 [15] Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1179-1207. doi: 10.3934/dcdsb.2021086 [16] Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, 2021, 29 (3) : 2517-2532. doi: 10.3934/era.2020127 [17] Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022060 [18] Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669 [19] A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769 [20] Petr Knobloch. Error estimates for a nonlinear local projection stabilization of transient convection--diffusion--reaction equations. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 901-911. doi: 10.3934/dcdss.2015.8.901

2021 Impact Factor: 1.497