\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one

Abstract Related Papers Cited by
  • We consider the equation modeling the compressible hydrodynamic flow of liquid crystals in one dimension. In this paper, we establish the existence of a weak solution $(\rho, u,n)$ of such a system when the initial density function $0\le \rho_0 \in L^\gamma$ for $\gamma>1$, $u_0\in L^2$, and $n_0\in H^1$. This extends a previous result by [12], where the existence of a weak solution was obtained under the stronger assumption that the initial density function $0$<$c\le \rho_0\in H^1$, $u_0\in L^2$, and $n_0\in H^1$.
    Mathematics Subject Classification: Primary: 35K55, 35D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Rational Mech. Anal., 9 (1962), 371-378.doi: 10.1007/BF00253358.

    [2]

    F. Leslie, Some constitute equations for anisotropic fluids, Q. J. Mech. Appl. Math., 19 (1966), 357-370.doi: 10.1093/qjmam/19.3.357.

    [3]

    F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.doi: 10.1002/cpa.3160420605.

    [4]

    F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math. Vol. XLV III (1995), 501-537.doi: 10.1002/cpa.3160480503.

    [5]

    F. H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rational Mech. Anal., 154 (2000), 135-156.doi: 10.1007/s002050000102.

    [6]

    F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals, DCDS, 2 (1996), 1-23.

    [7]

    L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831.doi: 10.1002/cpa.3160350604.

    [8]

    C. Liu and N. J. Walkington, Mixed methods for the approximation of liquid crystal flows, Math. Modeling and Numer. Anal., 36 (2002), 205-222.doi: 10.1051/m2an:2002010.

    [9]

    Blanca Climent-Ezquerra, Francisco Guillén-González and Marko Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. angew. Math. Phys. (2006) 984-998.

    [10]

    F. H. Lin, J. Y. Lin and C. Y. Wang, Liquid crystal flows in dimensions two, Arch. Rational Mech. Anal., 197 (2010), 297-336.doi: 10.1007/s00205-009-0278-x.

    [11]

    H. Y. Wen and S. J. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals, Preprint (2009).

    [12]

    S. J. Ding, J. Y. Lin, C. Y. Wang and H. Y. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D, Preprint (2009).

    [13]

    P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. II, Compressible Models. Clarendon Press, Oxford, 1998.

    [14]

    S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations, Commun. Math. Phys., 215 (2001), 559-581.doi: 10.1007/PL00005543.

    [15]

    E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.doi: 10.1007/PL00000976.

    [16]

    J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density and pressure, SIAM J. Math. Anal., 21 (1990), 1093-1117.doi: 10.1137/0521061.

    [17]

    O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Amer. Math. Soc., Providence RI, 1968.

    [18]

    L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, Vol. 19, 1998.

    [19]

    E. Feireisl, "Dynamics of Viscous Compressible Fluids," Oxford University Press, Oxford, 2004.

    [20]

    P. L. Lions, "Mathematical Topics in Fluid Mechanics," Vol. I, Incompressible Models, Clarendon Press, Oxford, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(83) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return