\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Boundary stabilizability of the linearized viscous Saint-Venant system

Abstract Related Papers Cited by
  • We consider a shallow water flow in a channel modeled by the Saint-Venant equations with a viscous term. We are interested in the stabilization of the flow at a steady state. We establish that the semi-group of the linearized system is exponentially stable. However when the convection coefficient is dominant, the natural stabilization turns out to be very slow. One way to enhance the stabilization of the system is to use boundary controls by means of a moving device located at the extremities of the channel. We determine, by an extension method due to Fursikov, boundary Dirichlet controls able to accelerate the stabilization of the flow. Numerical experiments illustrate the efficiency of the control.
    Mathematics Subject Classification: 76D55, 93C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. B. Abbott and A. W. Minns, "Computational Hydraulics," 2nd edition, Ashgate Publishing Company, Brookfield, USA, 1998.

    [2]

    S. N. Antontsev, A. V. Kazhikov and V. N. Monakhov, "Boundary Values Problems In Mechanics Of Nonhomogeneous Fluids," North-Holland, Amsterdam, 1990.

    [3]

    H. Arfaoui, "Contrôle et Stabilisation des Équations de Saint-Venant," Ph.D thesis, Université Tunis El Manar, Université Paul Sabatier Toulouse, 2006.

    [4]

    A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, "Representation and Control of Infinite Dimensional Systems," Vol. 2, Birkhäuser, 1993.

    [5]

    J. A. Cunge, F. M. Holly and Jr. A. Verwey, "Practical Aspects of Computational River Hydraulics," Pitman Advanced Publishing Program, Boston. London. Melbourne, 1980.

    [6]

    A. V. Fursikov, Stabilizability of quasilinear parabolic equation by by means of feedback boundary control, Sbornik Mathematics, 192 (2001), 593-639.doi: 10.1070/SM2001v192n04ABEH000560.

    [7]

    A. V. Fursikov, Stabilizability of two-dimensional Navier-Stokes equations with help of boundary feedback control, J. Math. Fluid Mech., 3 (2001), 259-301.doi: 10.1007/PL00000972.

    [8]

    A. V. Fursikov, Real Processes and Realizability of a Stabilization Method for Navier-Stokes Equations by Boundary Feedback Control, in "Nonlinear Problems in Mathematical Physics and Related Topics II, In Honor of Professor O. A. Ladyzhenskaya," Kluwer/Plenum Publishers, New-York, Boston, Dordrecht, London, Moscow, (2002), 137-177.

    [9]

    J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation, Discrete Continuous Dynam. Systems - B, 1 (2001), 89-102.

    [10]

    J. de Halleux, C. Prieur, J.-M. Coron, B. d'Andréa-Novel and G. Bastin, Boundary feedback control in networks of open channels, Automatica, 39:8 (2003), 1365-1376.doi: 10.1016/S0005-1098(03)00109-2.

    [11]

    Z. Huang, S. Jin, P. A. Markowich, C. Sparber and C. Zheng, A Time-Splitting spectral Scheme for the Dirac-Maxwell System, J. Comp. Physics, 208:2 (2005), 761-789.doi: 10.1016/j.jcp.2005.02.026.

    [12]

    L. A. Khan and P. L.-F. Liu, Numerical analyses of operator-splitting algorithms for the two-dimensional advection-diffusion equation, Comput. Meth. Appl. Mech. Engng., 152 (1998), 337-359.doi: 10.1016/S0045-7825(97)00127-8.

    [13]

    D. A. Lyn and P. Goodwin, Stability of a general Preissmann scheme, Journal of Hydraulic engineering, 113 (1987), 16-28.doi: 10.1061/(ASCE)0733-9429(1987)113:1(16).

    [14]

    G. Mathieu, "Étude et Contrôle des Équations de la Théorie 'Shallow Water' en Dimension un," Ph.D thesis, Université Paul Sabatier Toulouse, 1998.

    [15]

    M. Renardy, Are viscoelastic flows under control or out of control?, Systems & Control Letters, 54 (2005), 1183-1193.doi: 10.1016/j.sysconle.2005.04.006.

    [16]

    J. J. Stoker, "Water Waves, the Mathematical Theory with Applications," Pure and Applied Mathematics, Vol. IV,

    [17]

    D. H. Wagner, Equivalence of the Euler and Lagrangian equations of a gas dynamics for weak solutions, Journal of Differential Equations, 68 (1987), 118-136.doi: 10.1016/0022-0396(87)90188-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(132) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return