-
Previous Article
Heterogeneous viral environment in a HIV spatial model
- DCDS-B Home
- This Issue
-
Next Article
Boundary stabilizability of the linearized viscous Saint-Venant system
Mathematical models for strongly magnetized plasmas with mass disparate particles
1. | Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, 16 route de Gray, Besançon, 25030 Cedex |
2. | CMI/LATP (UMR 6632), Université de Provence, 39, rue Joliot Curie, 13453 Marseille Cedex 13 |
References:
[1] |
H. D. I. Abarbanel, Hamiltonian description of almost geostrophic flow, Geophysical and Astrophysical Fluid Dynamics, 33 (1985), 145-171.
doi: 10.1080/03091928508245427. |
[2] |
J. S. Allen and D. Holm, Extended-geostrophic Hamiltonian models for rotating shallow water motion, Physica D, 98 (1996), 229-248.
doi: 10.1016/0167-2789(96)00120-0. |
[3] |
N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations," Gordon and Breach Sciences Publishers, New York, 1961. |
[4] |
M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123. |
[5] |
M. Bostan, Transport equations with singular coefficients. Application to the gyrokinetic models in plasma physics, Research Report INRIA, hal:inria-00232800, submitted 2009. |
[6] |
M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, hal-00431289, submitted 2009. |
[7] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.
doi: 10.1080/03605300008821529. |
[8] |
A. H. Boozer, Physics of magnetically confined plasmas, Rev. Modern Phys., 76 (2004), 1071-1141.
doi: 10.1103/RevModPhys.76.1071. |
[9] |
A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468.
doi: 10.1103/RevModPhys.79.421. |
[10] |
F. Charles and L. Desvillettes, Small mass ratio limit of Boltzmann equations in the context of the study of evolution of dust particles in a rarefied atmosphere, J. Stat. Phys., 137 (2009), 539-567.
doi: 10.1007/s10955-009-9858-2. |
[11] |
J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, "Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations," Oxford Lecture Series in Mathematics and Its Applications 32, The Clarendon Press, Oxford University Press, 2006. |
[12] |
P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transport Theory Statist. Phys, 25 (1996), 595-633.
doi: 10.1080/00411459608222915. |
[13] |
E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213. |
[14] |
E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.
doi: 10.1137/S0036141099364243. |
[15] |
F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817.
doi: 10.1016/S0021-7824(99)00021-5. |
[16] |
T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.
doi: 10.1512/iumj.2004.53.2508. |
[17] |
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395-423.
doi: 10.1016/j.jcp.2006.01.023. |
[18] |
R. D. Hazeltine and J. D. Meiss, "Plasma Confinement," Dover Publications, Inc. Mineola, New York, 2003. |
[19] |
R. G. Littlejohn, A guiding center Hamiltonian : A new approach, J. Math. Phys. 20 (1979) 2445-2458.
doi: 10.1063/1.524053. |
[20] |
R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Phys. Fluids, 24 (1981), 1730-1749.
doi: 10.1063/1.863594. |
[21] |
J.-M. Rax, "Physique des plasmas, Cours et applications," Dunod, 2007. |
[22] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics," Vol. I, Functional Analysis, Academic Press, 1980. |
[23] |
R. Salmon, New equations for nearly geostrophic flow, J. Fluid Mechanics, 153 (1985), 461-477.
doi: 10.1017/S0022112085001343. |
[24] |
J. Vanneste and O. Bokhove, Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models, Physica D Nonlinear Phenomena, 164 (2002), 152-167.
doi: 10.1016/S0167-2789(02)00375-5. |
show all references
References:
[1] |
H. D. I. Abarbanel, Hamiltonian description of almost geostrophic flow, Geophysical and Astrophysical Fluid Dynamics, 33 (1985), 145-171.
doi: 10.1080/03091928508245427. |
[2] |
J. S. Allen and D. Holm, Extended-geostrophic Hamiltonian models for rotating shallow water motion, Physica D, 98 (1996), 229-248.
doi: 10.1016/0167-2789(96)00120-0. |
[3] |
N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations," Gordon and Breach Sciences Publishers, New York, 1961. |
[4] |
M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123. |
[5] |
M. Bostan, Transport equations with singular coefficients. Application to the gyrokinetic models in plasma physics, Research Report INRIA, hal:inria-00232800, submitted 2009. |
[6] |
M. Bostan, Gyrokinetic Vlasov equation in three dimensional setting. Second order approximation, hal-00431289, submitted 2009. |
[7] |
Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.
doi: 10.1080/03605300008821529. |
[8] |
A. H. Boozer, Physics of magnetically confined plasmas, Rev. Modern Phys., 76 (2004), 1071-1141.
doi: 10.1103/RevModPhys.76.1071. |
[9] |
A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468.
doi: 10.1103/RevModPhys.79.421. |
[10] |
F. Charles and L. Desvillettes, Small mass ratio limit of Boltzmann equations in the context of the study of evolution of dust particles in a rarefied atmosphere, J. Stat. Phys., 137 (2009), 539-567.
doi: 10.1007/s10955-009-9858-2. |
[11] |
J.-Y. Chemin, B. Desjardins, I. Gallagher, E. Grenier, "Mathematical Geophysics: An Introduction to Rotating Fluids and the Navier-Stokes Equations," Oxford Lecture Series in Mathematics and Its Applications 32, The Clarendon Press, Oxford University Press, 2006. |
[12] |
P. Degond and B. Lucquin-Desreux, Transport coefficients of plasmas and disparate mass binary gases, Transport Theory Statist. Phys, 25 (1996), 595-633.
doi: 10.1080/00411459608222915. |
[13] |
E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213. |
[14] |
E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247.
doi: 10.1137/S0036141099364243. |
[15] |
F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817.
doi: 10.1016/S0021-7824(99)00021-5. |
[16] |
T. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equations. I. Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515.
doi: 10.1512/iumj.2004.53.2508. |
[17] |
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395-423.
doi: 10.1016/j.jcp.2006.01.023. |
[18] |
R. D. Hazeltine and J. D. Meiss, "Plasma Confinement," Dover Publications, Inc. Mineola, New York, 2003. |
[19] |
R. G. Littlejohn, A guiding center Hamiltonian : A new approach, J. Math. Phys. 20 (1979) 2445-2458.
doi: 10.1063/1.524053. |
[20] |
R. G. Littlejohn, Hamiltonian formulation of guiding center motion, Phys. Fluids, 24 (1981), 1730-1749.
doi: 10.1063/1.863594. |
[21] |
J.-M. Rax, "Physique des plasmas, Cours et applications," Dunod, 2007. |
[22] |
M. Reed and B. Simon, "Methods of Modern Mathematical Physics," Vol. I, Functional Analysis, Academic Press, 1980. |
[23] |
R. Salmon, New equations for nearly geostrophic flow, J. Fluid Mechanics, 153 (1985), 461-477.
doi: 10.1017/S0022112085001343. |
[24] |
J. Vanneste and O. Bokhove, Dirac-bracket approach to nearly geostrophic Hamiltonian balanced models, Physica D Nonlinear Phenomena, 164 (2002), 152-167.
doi: 10.1016/S0167-2789(02)00375-5. |
[1] |
Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186 |
[2] |
Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200 |
[3] |
Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803 |
[4] |
Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013 |
[5] |
Tudor Barbu. Deep learning-based multiple moving vehicle detection and tracking using a nonlinear fourth-order reaction-diffusion based multi-scale video object analysis. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022083 |
[6] |
Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N $. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449 |
[7] |
Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135 |
[8] |
Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451 |
[9] |
Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69 |
[10] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[11] |
Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062 |
[12] |
Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151 |
[13] |
Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223 |
[14] |
Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027 |
[15] |
Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011 |
[16] |
Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379 |
[17] |
Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic and Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269 |
[18] |
Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169 |
[19] |
Mark F. Demers, Hong-Kun Zhang. Spectral analysis of the transfer operator for the Lorentz gas. Journal of Modern Dynamics, 2011, 5 (4) : 665-709. doi: 10.3934/jmd.2011.5.665 |
[20] |
Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]