December  2011, 15(3): 687-705. doi: 10.3934/dcdsb.2011.15.687

Analysis of a frictional contact problem for viscoelastic materials with long memory

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Łojasiewicza 6, 30348 Krakow, Poland, Poland

2. 

Laboratoire de Mathématiques et Physique pour les Systèmes, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan

Received  July 2009 Revised  November 2010 Published  February 2011

We consider a mathematical model which describes the frictional contact between a deformable body and a foundation. The process is time-dependent, the material behavior is described with a viscoelastic constitutive law with long memory and the contact is modeled with subdifferential boundary conditions. We derive the variational formulation of the problem which is of the form of a hemivariational inequality with Volterra integral term for the displacement field. Then we prove existence and uniqueness results in the study of abstract inclusions as well as in the study of abstract hemivariational inequalities with Volterra integral term. The proofs are based on arguments on pseudomonotone operators, compactness and fixed point. We use the abstract results to prove the unique solvability of the frictional contact problem. Finally, we present examples of contact and frictional boundary conditions for which our results work.
Citation: Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687
References:
[1]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Wiley, Interscience, New York, 1983.

[2]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Theory," Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Applications," Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[4]

A. D. Drozdov, "Finite Elasticity and Viscoelasticity - A Course in the Nonlinear Mechanics of Solids," World Scientific, Singapore, 1996.

[5]

G. Duvaut and J. L. Lions, "Inequalities in Mechanics and Physics," Springer-Verlag, Berlin, 1976.

[6]

C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems: Variational Methods and Existence Theorems," Pure and Applied Mathematics, 270, Chapman/CRC Press, New York, 2005.

[7]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," American Mathematical Society, International Press, 2002.

[8]

I. R. Ionescu, C. Dascalu and M. Campillo, Slip-weakening friction on a periodic system of faults: Spectral analysis, Z. Angew. Math. Phys. (ZAMP), 53 (2002), 980-995. doi: 10.1007/PL00012624.

[9]

I. R. Ionescu, Q.-L. Nguyen and S. Wolf, Slip displacement dependent friction in dynamic elasticity, Nonlinear Analysis, 53 (2003), 375-390. doi: 10.1016/S0362-546X(02)00302-4.

[10]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete Continuous Dynam. Syst. Ser. B, 6 (2006), 1339-1356. doi: 10.3934/dcdsb.2006.6.1339.

[11]

S. Migórski, A. Ochal and M. Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Mathematical Models and Methods in Applied Sciences, 18 (2008), 271-290. doi: 10.1142/S021820250800267X.

[12]

Z. Naniewicz and P. D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications," Marcel Dekker, Inc., New York, Basel, Hong Kong, 1995.

[13]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering," Springer-Verlag, Berlin, 1993.

[14]

A. D. Rodríguez-Aros, M. Sofonea and J. M. Viaño, A class of evolutionary variational inequalities with Volterra-type integral term, Mathematical Models and Methods in Applied Sciences, 14 (2004), 555-577.

[15]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact," Lecture Notes Physics, 655, Springer, Berlin, Heidelberg, 2004.

[16]

M. Sofonea and A. Matei, "Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems," Advances in Mechanics and Mathematics, 18, Springer, New York, 2009.

[17]

M. Sofonea, A. D. Rodríguez-Aros and J. M. Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact, Mathematical and Computer Modelling, 41 (2005), 1355-1369. doi: 10.1016/j.mcm.2004.01.011.

[18]

E. Zeidler, "Nonlinear Functional Analysis and Applications II A/B," Springer, New York, 1990.

show all references

References:
[1]

F. H. Clarke, "Optimization and Nonsmooth Analysis," Wiley, Interscience, New York, 1983.

[2]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Theory," Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[3]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, "An Introduction to Nonlinear Analysis: Applications," Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.

[4]

A. D. Drozdov, "Finite Elasticity and Viscoelasticity - A Course in the Nonlinear Mechanics of Solids," World Scientific, Singapore, 1996.

[5]

G. Duvaut and J. L. Lions, "Inequalities in Mechanics and Physics," Springer-Verlag, Berlin, 1976.

[6]

C. Eck, J. Jarušek and M. Krbec, "Unilateral Contact Problems: Variational Methods and Existence Theorems," Pure and Applied Mathematics, 270, Chapman/CRC Press, New York, 2005.

[7]

W. Han and M. Sofonea, "Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity," American Mathematical Society, International Press, 2002.

[8]

I. R. Ionescu, C. Dascalu and M. Campillo, Slip-weakening friction on a periodic system of faults: Spectral analysis, Z. Angew. Math. Phys. (ZAMP), 53 (2002), 980-995. doi: 10.1007/PL00012624.

[9]

I. R. Ionescu, Q.-L. Nguyen and S. Wolf, Slip displacement dependent friction in dynamic elasticity, Nonlinear Analysis, 53 (2003), 375-390. doi: 10.1016/S0362-546X(02)00302-4.

[10]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete Continuous Dynam. Syst. Ser. B, 6 (2006), 1339-1356. doi: 10.3934/dcdsb.2006.6.1339.

[11]

S. Migórski, A. Ochal and M. Sofonea, Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact, Mathematical Models and Methods in Applied Sciences, 18 (2008), 271-290. doi: 10.1142/S021820250800267X.

[12]

Z. Naniewicz and P. D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications," Marcel Dekker, Inc., New York, Basel, Hong Kong, 1995.

[13]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering," Springer-Verlag, Berlin, 1993.

[14]

A. D. Rodríguez-Aros, M. Sofonea and J. M. Viaño, A class of evolutionary variational inequalities with Volterra-type integral term, Mathematical Models and Methods in Applied Sciences, 14 (2004), 555-577.

[15]

M. Shillor, M. Sofonea and J. J. Telega, "Models and Analysis of Quasistatic Contact," Lecture Notes Physics, 655, Springer, Berlin, Heidelberg, 2004.

[16]

M. Sofonea and A. Matei, "Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems," Advances in Mechanics and Mathematics, 18, Springer, New York, 2009.

[17]

M. Sofonea, A. D. Rodríguez-Aros and J. M. Viaño, A class of integro-differential variational inequalities with applications to viscoelastic contact, Mathematical and Computer Modelling, 41 (2005), 1355-1369. doi: 10.1016/j.mcm.2004.01.011.

[18]

E. Zeidler, "Nonlinear Functional Analysis and Applications II A/B," Springer, New York, 1990.

[1]

Stanislaw Migórski. Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1339-1356. doi: 10.3934/dcdsb.2006.6.1339

[2]

Furi Guo, Jinrong Wang, Jiangfeng Han. Impulsive hemivariational inequality for a class of history-dependent quasistatic frictional contact problems. Evolution Equations and Control Theory, 2022, 11 (5) : 1613-1633. doi: 10.3934/eect.2021057

[3]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2022, 11 (4) : 1149-1173. doi: 10.3934/eect.2021038

[4]

Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116

[5]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[6]

Hui Liang, Martin Stynes. Regularity of the solution of a nonlinear Volterra integral equation of the second kind. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022164

[7]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[8]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[9]

Zijia Peng, Cuiming Ma, Zhonghui Liu. Existence for a quasistatic variational-hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 1153-1165. doi: 10.3934/eect.2020058

[10]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[11]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1521-1543. doi: 10.3934/cpaa.2021031

[12]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulations of a frictional contact problem with damage and memory. Mathematical Control and Related Fields, 2022, 12 (3) : 621-639. doi: 10.3934/mcrf.2021037

[13]

Zaiyun Peng, Xinmin Yang, Kok Lay Teo. On the Hölder continuity of approximate solution mappings to parametric weak generalized Ky Fan Inequality. Journal of Industrial and Management Optimization, 2015, 11 (2) : 549-562. doi: 10.3934/jimo.2015.11.549

[14]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial and Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[15]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[16]

Lijing Xi, Yuying Zhou, Yisheng Huang. A class of quasilinear elliptic hemivariational inequality problems on unbounded domains. Journal of Industrial and Management Optimization, 2014, 10 (3) : 827-837. doi: 10.3934/jimo.2014.10.827

[17]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[18]

Changjie Fang, Weimin Han. Stability analysis and optimal control of a stationary Stokes hemivariational inequality. Evolution Equations and Control Theory, 2020, 9 (4) : 995-1008. doi: 10.3934/eect.2020046

[19]

Zhenhai Liu, Stanislaw Migórski. Noncoercive damping in dynamic hemivariational inequality with application to problem of piezoelectricity. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 129-143. doi: 10.3934/dcdsb.2008.9.129

[20]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (11)

[Back to Top]