December  2011, 15(3): 893-914. doi: 10.3934/dcdsb.2011.15.893

Oscillations in a plasmid turbidostat model with delayed feedback control

1. 

College of Science, Shanghai University for Science and Technology, Shanghai 200093, China

2. 

Department of Mathematics, Tongji University, Shanghai 200092, China

3. 

R&D department, shanghai RAAS blood products Co,. Ltd, Shanghai 200245, China

Received  February 2010 Revised  September 2010 Published  February 2011

A model of competition between plasmid-bearing and plasmid-free organisms in a turbidostat with delayed feedback control is investigated. By choosing the delay in the measurement of the optical sensor to the turbidity of the fluid as a bifurcation parameter, we show that Hopf bifurcations can occur as the delay crosses some critical values. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Computer simulations illustrate the results.
Citation: Sanling Yuan, Yongli Song, Junhui Li. Oscillations in a plasmid turbidostat model with delayed feedback control. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 893-914. doi: 10.3934/dcdsb.2011.15.893
References:
[1]

P. De Leenheer and H. L. Smith, Feedback control for the chemostat, J. Math. Biol., 46 (2003), 48-70. doi: 10.1007/s00285-002-0170-x.

[2]

S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Math. Biosci., 187 (2004), 53-91. doi: 10.1016/j.mbs.2003.07.004.

[3]

S. B. Hsu, P. Waltman and G. S. K. Wolkowicz, Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat, J. Math. Biol., 32 (1994), 731-742. doi: 10.1007/BF00163024.

[4]

S. B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in selective media, Chem. Eng. Sci., 52 (1997), 23-35. doi: 10.1016/S0009-2509(96)00385-5.

[5]

R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, J. Theor. Biol., 122 (1986), 83-93. doi: 10.1016/S0022-5193(86)80226-0.

[6]

T. K. Luo and S. B. Hsu, Global Analysis of a Model of plasmid-bearing, plasmid-free Competition in a chemostat with inhibitions, J. Math. Biol., 34 (1995), 41-76. doi: 10.1007/BF00180136.

[7]

S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Appl. Math., 52 (1992), 528-540. doi: 10.1137/0152029.

[8]

S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, J. Ind. Appl. Math., 15 (1998), 471-490. doi: 10.1007/BF03167323.

[9]

J. P. Grover, "Resource Competition,'' Chapman & Hall, 1997.

[10]

D. Tilman, "Resource Competition and Community Structure,'' Princeton U. P., Princeton, N. J., 1982.

[11]

J. Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems, J. Theoret. Biol., 188 (1997), 121-126. doi: 10.1006/jtbi.1997.0458.

[12]

B. Li, Competition in a turbidostat for an inhibitory nutrient, Journal of Biological Dynamics, 2 (2008), 208-220. doi: 10.1080/17513750802018345.

[13]

N. S. Panikov, "Microbial Growth Kinetics,'' Chapman & Hall, New York, 1995.

[14]

M. L. Shuler and F. Kargi, "Bioprocess Engineering, Basic Concepts,'' Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[15]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,'' Boston: Kluwer Academic Publishers, 1992.

[16]

J. Hale and S. Lunel, "Introduction to Functional Differential Equations,'' New York: Spring-Verlag, 1993.

[17]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'' Boston: Academic Press, 1993.

[18]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'' Cambridge University Press, Cambridge, 1981.

[19]

D. F. Ryder and D. DiBiasio, An operational strategy for unstable recombinant DNA cultures, Biotechnology and Bioengineering, 26 (1984), 942-957. doi: 10.1002/bit.260260819.

[20]

G. Stephanopoulis and G. Lapidus, Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures, Chem. Engin. Sci., 43 (1988), 49-57. doi: 10.1016/0009-2509(88)87125-2.

[21]

S. B. Hsu and C. C. Li, A discrete-delayed model with plasmid-bearing, plalmid-free competition in a chemostat, Discrete Continuous Dynam. Systems - B, 5 (2005), 699-718.

[22]

Z. Lu and K. P. Hadeler, Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor, Math. Biosci., 148 (1998), 147-159. doi: 10.1016/S0025-5564(97)10010-4.

[23]

S. Ai, Periodic solution in a chemostat of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, J. Math. Biol., 42 (2001), 71-94. doi: 10.1007/PL00000073.

[24]

S. Yuan, D. Xiao and M. Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor, Math. Biosci., 202 (2006), 1-28. doi: 10.1016/j.mbs.2006.04.003.

[25]

S. Yuan, Y. Zhao and A. Xiao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout, Mathematical Problems in Engneeing, Volume 2009, Article ID 204632, 17 pages. doi: 10.1155/2009/204632.

[26]

S. Yuan, W. Zhang and M. Han, Global asymptotic behavior in chemostat-type competition models with delay, Nonlinear Analysis: Real World Applications, 10 (2009), 1305-1320. doi: 10.1016/j.nonrwa.2008.01.009.

[27]

Z. Xiang and X. Song, A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input, Chaos, Solitons and Fractals, 32 (2007), 1419-1428. doi: 10.1016/j.chaos.2005.11.069.

[28]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Appl. Math., 38 (2007), 1860-1885. doi: 10.1137/050627514.

[29]

O. Tagashira and T. Hara, Delayed feedback control for a chemostat model, Math. Biosci., 201 (2006), 101-112. doi: 10.1016/j.mbs.2005.12.014.

[30]

O. Tagashira, Permanent coexistence in chemostat models with delayed feedback control, Nonlinear Analysis: Real World Applications, 10 (2009), 1443-1452. doi: 10.1016/j.nonrwa.2008.01.015.

[31]

F. Mazenc and M. Malisoff, Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements, Automatica, 46 (2010), 1428-1436. doi: 10.1016/j.automatica.2010.06.012.

show all references

References:
[1]

P. De Leenheer and H. L. Smith, Feedback control for the chemostat, J. Math. Biol., 46 (2003), 48-70. doi: 10.1007/s00285-002-0170-x.

[2]

S. B. Hsu and P. Waltman, A survey of mathematical models of competition with an inhibitor, Math. Biosci., 187 (2004), 53-91. doi: 10.1016/j.mbs.2003.07.004.

[3]

S. B. Hsu, P. Waltman and G. S. K. Wolkowicz, Global analysis of a model of plasmid-bearing, plasmid-free competition in a chemostat, J. Math. Biol., 32 (1994), 731-742. doi: 10.1007/BF00163024.

[4]

S. B. Hsu and P. Waltman, Competition between plasmid-bearing and plasmid-free organisms in selective media, Chem. Eng. Sci., 52 (1997), 23-35. doi: 10.1016/S0009-2509(96)00385-5.

[5]

R. E. Lenski and S. Hattingh, Coexistence of two competitors on one resource and one inhibitor: A chemostat model based on bacteria and antibiotics, J. Theor. Biol., 122 (1986), 83-93. doi: 10.1016/S0022-5193(86)80226-0.

[6]

T. K. Luo and S. B. Hsu, Global Analysis of a Model of plasmid-bearing, plasmid-free Competition in a chemostat with inhibitions, J. Math. Biol., 34 (1995), 41-76. doi: 10.1007/BF00180136.

[7]

S. B. Hsu and P. Waltman, Analysis of a model of two competitors in a chemostat with an external inhibitor, SIAM J. Appl. Math., 52 (1992), 528-540. doi: 10.1137/0152029.

[8]

S. B. Hsu and P. Waltman, Competition in the chemostat when one competitor produces a toxin, J. Ind. Appl. Math., 15 (1998), 471-490. doi: 10.1007/BF03167323.

[9]

J. P. Grover, "Resource Competition,'' Chapman & Hall, 1997.

[10]

D. Tilman, "Resource Competition and Community Structure,'' Princeton U. P., Princeton, N. J., 1982.

[11]

J. Flegr, Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems, J. Theoret. Biol., 188 (1997), 121-126. doi: 10.1006/jtbi.1997.0458.

[12]

B. Li, Competition in a turbidostat for an inhibitory nutrient, Journal of Biological Dynamics, 2 (2008), 208-220. doi: 10.1080/17513750802018345.

[13]

N. S. Panikov, "Microbial Growth Kinetics,'' Chapman & Hall, New York, 1995.

[14]

M. L. Shuler and F. Kargi, "Bioprocess Engineering, Basic Concepts,'' Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[15]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,'' Boston: Kluwer Academic Publishers, 1992.

[16]

J. Hale and S. Lunel, "Introduction to Functional Differential Equations,'' New York: Spring-Verlag, 1993.

[17]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,'' Boston: Academic Press, 1993.

[18]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Applications of Hopf Bifurcation,'' Cambridge University Press, Cambridge, 1981.

[19]

D. F. Ryder and D. DiBiasio, An operational strategy for unstable recombinant DNA cultures, Biotechnology and Bioengineering, 26 (1984), 942-957. doi: 10.1002/bit.260260819.

[20]

G. Stephanopoulis and G. Lapidus, Chemostat dynamics of plasmid-bearing plasmid-free mixed recombinant cultures, Chem. Engin. Sci., 43 (1988), 49-57. doi: 10.1016/0009-2509(88)87125-2.

[21]

S. B. Hsu and C. C. Li, A discrete-delayed model with plasmid-bearing, plalmid-free competition in a chemostat, Discrete Continuous Dynam. Systems - B, 5 (2005), 699-718.

[22]

Z. Lu and K. P. Hadeler, Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor, Math. Biosci., 148 (1998), 147-159. doi: 10.1016/S0025-5564(97)10010-4.

[23]

S. Ai, Periodic solution in a chemostat of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor, J. Math. Biol., 42 (2001), 71-94. doi: 10.1007/PL00000073.

[24]

S. Yuan, D. Xiao and M. Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor, Math. Biosci., 202 (2006), 1-28. doi: 10.1016/j.mbs.2006.04.003.

[25]

S. Yuan, Y. Zhao and A. Xiao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout, Mathematical Problems in Engneeing, Volume 2009, Article ID 204632, 17 pages. doi: 10.1155/2009/204632.

[26]

S. Yuan, W. Zhang and M. Han, Global asymptotic behavior in chemostat-type competition models with delay, Nonlinear Analysis: Real World Applications, 10 (2009), 1305-1320. doi: 10.1016/j.nonrwa.2008.01.009.

[27]

Z. Xiang and X. Song, A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input, Chaos, Solitons and Fractals, 32 (2007), 1419-1428. doi: 10.1016/j.chaos.2005.11.069.

[28]

J. Wu, H. Nie and G. S. K. Wolkowicz, The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat, SIAM J. Appl. Math., 38 (2007), 1860-1885. doi: 10.1137/050627514.

[29]

O. Tagashira and T. Hara, Delayed feedback control for a chemostat model, Math. Biosci., 201 (2006), 101-112. doi: 10.1016/j.mbs.2005.12.014.

[30]

O. Tagashira, Permanent coexistence in chemostat models with delayed feedback control, Nonlinear Analysis: Real World Applications, 10 (2009), 1443-1452. doi: 10.1016/j.nonrwa.2008.01.015.

[31]

F. Mazenc and M. Malisoff, Stabilization of a chemostat model with Haldane growth functions and a delay in the measurements, Automatica, 46 (2010), 1428-1436. doi: 10.1016/j.automatica.2010.06.012.

[1]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[2]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[3]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[4]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[5]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[6]

Nabil T. Fadai, Michael J. Ward, Juncheng Wei. A time-delay in the activator kinetics enhances the stability of a spike solution to the gierer-meinhardt model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1431-1458. doi: 10.3934/dcdsb.2018158

[7]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[8]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[9]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[10]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[11]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

[12]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[13]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[14]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

[15]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[16]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[17]

Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979

[18]

Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489

[19]

Shu Li, Zhenzhen Li, Binxiang Dai. Stability and Hopf bifurcation in a prey-predator model with memory-based diffusion. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022025

[20]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (111)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]