• Previous Article
    Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis
  • DCDS-B Home
  • This Issue
  • Next Article
    Feature extraction of the patterned textile with deformations via optimal control theory
November  2011, 16(4): 1071-1082. doi: 10.3934/dcdsb.2011.16.1071

Synchronization of chaotic systems with time-varying coupling delays

1. 

Texas A&M University at Qatar, Doha, P.O.Box 23874, Qatar

2. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

3. 

Institute for Physics, University of Potsdam, Am Neuen Palais, Gebude 19, D-14415 Potsdam, Germany

Received  October 2010 Revised  May 2011 Published  August 2011

In this paper, we study the complete synchronization of a class of time-varying delayed coupled chaotic systems using feedback control. In terms of Linear Matrix Inequalities, a sufficient condition is obtained through using a Lyapunov-Krasovskii functional and differential equation inequalities. The conditions can be easily verified and implemented. We present two simulation examples to illustrate the effectiveness of the proposed method.
Citation: Tingwen Huang, Guanrong Chen, Juergen Kurths. Synchronization of chaotic systems with time-varying coupling delays. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1071-1082. doi: 10.3934/dcdsb.2011.16.1071
References:
[1]

S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), 1-101. doi: 10.1016/S0370-1573(02)00137-0.

[2]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory," SIAM Studies in Applied Mathematics, 15, SIAM, Philadephia, PA, 1994.

[3]

J. Cao and J. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006), 013133, 6 pp.

[4]

P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056. doi: 10.1364/OL.19.002056.

[5]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992.

[6]

H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications," Wiley-VCH, Weinheim, 1999.

[7]

H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties, Chaos, 19 (2009), 033128. doi: 10.1063/1.3212940.

[8]

T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18 (2008), 033122, 8 pp.

[9]

C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits and Systems II, 54 (2006), 1019-1023.

[10]

C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication, Physica D, 194 (2004), 187-202. doi: 10.1016/j.physd.2004.02.005.

[11]

X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87-101. doi: 10.3934/jimo.2011.7.87.

[12]

J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with time-varying delay, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 1347-1356. doi: 10.1109/TCSI.2008.916462.

[13]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824. doi: 10.1103/PhysRevLett.64.821.

[14]

J. Qing, Projective synchronization of a new hyperchaotic Lorenz system, Physics Letters A, 370 (2007), 40-45. doi: 10.1016/j.physleta.2007.05.028.

[15]

F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Optics Communications, 207 (2002), 295-306. doi: 10.1016/S0030-4018(02)01494-3.

[16]

M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), 1804-1807. doi: 10.1103/PhysRevLett.76.1804.

[17]

N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980-994. doi: 10.1103/PhysRevE.51.980.

[18]

S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in external-cavity laser diodes, IEEE Journal of Quantum Electronics, 38 (2002), 1155-1161. doi: 10.1109/JQE.2002.801949.

[19]

Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed time-varying delays, Chaos, 18 (2008), 043126, 10 pp.

[20]

K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers, Phys. Rev. E, 55 (1997), 3865. doi: 10.1103/PhysRevE.55.3865.

[21]

J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 393-408. doi: 10.3934/dcdsb.2011.16.393.

[22]

R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with Time-Varying Delay," Proceedings of the 8th World Congress on Intelligent Control and Automation, China, (2010), 3914-3919. doi: 10.1109/WCICA.2010.5554977.

show all references

References:
[1]

S. Boccaletti, J. Kurths, G. Osipov, D. L. Vallares and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep., 366 (2002), 1-101. doi: 10.1016/S0370-1573(02)00137-0.

[2]

S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, "Linear Matrix Inequalities In Systems And Control Theory," SIAM Studies in Applied Mathematics, 15, SIAM, Philadephia, PA, 1994.

[3]

J. Cao and J. Lu, Adaptive synchronization of neural networks with or without time-varying delay, Chaos, 16 (2006), 013133, 6 pp.

[4]

P. Colet and R. Roy, Digital communication with synchronized chaotic lasers, Opt. Lett., 19 (1994), 2056. doi: 10.1364/OL.19.002056.

[5]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992.

[6]

H. G. Schuster, ed., "Handbook of Chaos Control: Foundations and Applications," Wiley-VCH, Weinheim, 1999.

[7]

H. Huang, G. Feng and Y. Sun, Robust synchronization of chaotic systems subject to parameter uncertainties, Chaos, 19 (2009), 033128. doi: 10.1063/1.3212940.

[8]

T. Huang, C. Li and X. Liu, Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos, 18 (2008), 033122, 8 pp.

[9]

C. Li, G. Feng and X. Liao, Stabilization of nonlinear systems via periodically intermittent control, IEEE Trans. Circuits and Systems II, 54 (2006), 1019-1023.

[10]

C. Li, X. Liao and K. Wong, Chaotic lag synchronization of coupled time-delayed systems and its application in secure communication, Physica D, 194 (2004), 187-202. doi: 10.1016/j.physd.2004.02.005.

[11]

X. Liu, T. Chen and W. Lu, Cluster synchronization for linearly coupled complex networks, Journal of Industrial and Management Optimization (JIMO), 7 (2011), 87-101. doi: 10.3934/jimo.2011.7.87.

[12]

J. Lu, J. Cao and D. Ho, Adaptive stabilization and synchronization for chaotic lur’e systems with time-varying delay, IEEE Transactions on Circuits and Systems I: Regular Papers, 55 (2008), 1347-1356. doi: 10.1109/TCSI.2008.916462.

[13]

L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824. doi: 10.1103/PhysRevLett.64.821.

[14]

J. Qing, Projective synchronization of a new hyperchaotic Lorenz system, Physics Letters A, 370 (2007), 40-45. doi: 10.1016/j.physleta.2007.05.028.

[15]

F. Rogister, D. Pieroux, M. Sciamanna, P. Megret and M. Blondel, Anticipating synchronization of two chaotic laser diodes by incoherent optical coupling and its application to secure communications, Optics Communications, 207 (2002), 295-306. doi: 10.1016/S0030-4018(02)01494-3.

[16]

M. Rosenblum and A. Pikovsky, Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76 (1996), 1804-1807. doi: 10.1103/PhysRevLett.76.1804.

[17]

N. Rulkov and M. Sushchik, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980-994. doi: 10.1103/PhysRevE.51.980.

[18]

S. Sivaprakasam and P. Spencer, Regimes of chaotic synchronization in external-cavity laser diodes, IEEE Journal of Quantum Electronics, 38 (2002), 1155-1161. doi: 10.1109/JQE.2002.801949.

[19]

Q. Song and J. Cao, Global dissipativity analysis on uncertain neural networks with mixed time-varying delays, Chaos, 18 (2008), 043126, 10 pp.

[20]

K. Thornburg, M. Moller, R. Roy and T. Carr, Chaos and coherence in coupled lasers, Phys. Rev. E, 55 (1997), 3865. doi: 10.1103/PhysRevE.55.3865.

[21]

J. Wang, Z. Yang, T. Huang and M. Xiao, Local and global exponential synchronization of complex delayed dynamical networks with general topology, Discrete and Continuous Dynamical Systems-Series B, 16 (2011), 393-408. doi: 10.3934/dcdsb.2011.16.393.

[22]

R. Zhen, X. Wu and J. Zhang, "Sliding Model Synchronization Controller Design for Chaotic Neural Network with Time-Varying Delay," Proceedings of the 8th World Congress on Intelligent Control and Automation, China, (2010), 3914-3919. doi: 10.1109/WCICA.2010.5554977.

[1]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[2]

Carlos Nonato, Manoel Jeremias dos Santos, Carlos Raposo. Dynamics of Timoshenko system with time-varying weight and time-varying delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 523-553. doi: 10.3934/dcdsb.2021053

[3]

Yangzi Hu, Fuke Wu. The improved results on the stochastic Kolmogorov system with time-varying delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (5) : 1481-1497. doi: 10.3934/dcdsb.2015.20.1481

[4]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[5]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[6]

Xin-Guang Yang, Jing Zhang, Shu Wang. Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1493-1515. doi: 10.3934/dcds.2020084

[7]

Mokhtar Kirane, Belkacem Said-Houari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks. Communications on Pure and Applied Analysis, 2011, 10 (2) : 667-686. doi: 10.3934/cpaa.2011.10.667

[8]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[9]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[10]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[11]

Zhen Zhang, Jianhua Huang, Xueke Pu. Pullback attractors of FitzHugh-Nagumo system on the time-varying domains. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3691-3706. doi: 10.3934/dcdsb.2017150

[12]

Di Wu, Yanqin Bai, Fusheng Xie. Time-scaling transformation for optimal control problem with time-varying delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1683-1695. doi: 10.3934/dcdss.2020098

[13]

Xin-Guang Yang. An Erratum on "Stability and dynamics of a weak viscoelastic system with memory and nonlinear time-varying delay" (Discrete Continuous Dynamic Systems, 40(3), 2020, 1493-1515). Discrete and Continuous Dynamical Systems, 2022, 42 (3) : 1493-1494. doi: 10.3934/dcds.2021161

[14]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[15]

K. Aruna Sakthi, A. Vinodkumar. Stabilization on input time-varying delay for linear switched systems with truncated predictor control. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 237-247. doi: 10.3934/naco.2019050

[16]

Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a time-varying delay term in the weakly nonlinear internal feedbacks. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 491-506. doi: 10.3934/dcdsb.2017024

[17]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[18]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[19]

Aowen Kong, Carlos Nonato, Wenjun Liu, Manoel Jeremias dos Santos, Carlos Raposo. Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2959-2978. doi: 10.3934/dcdsb.2021168

[20]

Abdelfettah Hamzaoui, Nizar Hadj Taieb, Mohamed Ali Hammami. Practical partial stability of time-varying systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3585-3603. doi: 10.3934/dcdsb.2021197

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]