\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An optimal PID controller design for nonlinear constrained optimal control problems

Abstract Related Papers Cited by
  • In this paper, we consider a class of optimal PID control problems subject to continuous inequality constraints and terminal equality constraint. By applying the constraint transcription method and a local smoothing technique to these continuous inequality constraint functions, we construct the corresponding smooth approximate functions. We use the concept of the penalty function to append these smooth approximate functions to the cost function, forming a new cost function. Then, the constrained optimal PID control problem is approximated by a sequence of optimal parameter selection problems subject to only terminal equality constraint. Each of these optimal parameter selection problems can be viewed and hence solved as a nonlinear optimization problem. The gradient formulas of the new appended cost function and the terminal equality constraint function are derived, and a reliable computation algorithm is given. The method proposed is used to solve a ship steering control problem.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Van Amerongen, Adaptive steering of ships-a model reference approach, Automatica, 20 (1984), 3-14.doi: 10.1016/0005-1098(84)90060-8.

    [2]

    M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres," Hydro and Aerodynamics Lab. Report No. Hy-14, Denmark, 1969.

    [3]

    D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship," First IFAC/IFIP Symosium on Ship Operation Automation, Oslo, 1973.

    [4]

    J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient, IEEE Journal of Oceanic Engineering, 32 (2007), 346-352.

    [5]

    L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual," 1991.

    [6]

    L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375.doi: 10.1016/0005-1098(90)90131-Z.

    [7]

    C. C. Lim and W. Forsythe, Autopilot for ship control, IEE Procedings, 130 (1983), 281-294.

    [8]

    C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization, 5 (2009), 835-850.doi: 10.3934/jimo.2009.5.835.

    [9]

    R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems, IEEE Transactions on Automatic Control, 54 (2009), 2455-2460.doi: 10.1109/TAC.2009.2029310.

    [10]

    R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257.doi: 10.1016/j.automatica.2009.05.029.

    [11]

    V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control, Control Theory and Advanced Technology, 10 (1994), 793-814.

    [12]

    K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.

    [13]

    K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, J. Austral. Math. Soc. Ser. B, 40 (1999), 314-335.doi: 10.1017/S0334270000010936.

    [14]

    K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering, Journal of Optimization Theory and Applicaitons, 56 (1988), 145-156.doi: 10.1007/BF00938530.

    [15]

    K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792.doi: 10.1016/0005-1098(93)90076-6.

    [16]

    C. Z. Wu and K. L. Teo, Global impulsive optimal control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450.doi: 10.3934/jimo.2006.2.435.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return