• Previous Article
    Determination of effective diffusion coefficients of drug delivery devices by a state observer approach
  • DCDS-B Home
  • This Issue
  • Next Article
    Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis
November  2011, 16(4): 1101-1117. doi: 10.3934/dcdsb.2011.16.1101

An optimal PID controller design for nonlinear constrained optimal control problems

1. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology, Building 2F, Technology Park of Harbin Institute of Technology, Harbin, 150001, China

2. 

Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U 1987, Perth, W.A. 6845

3. 

School of Electrical and Electronic Engineering, The University of Adelaide, SA 5005

4. 

Center for Control Theory and Guidance Technology, Harbin Institute of Technology 210, Building 2F, Technology Park of Harbin Institute of Technology, Harbin, 150001, China

Received  September 2010 Revised  March 2011 Published  August 2011

In this paper, we consider a class of optimal PID control problems subject to continuous inequality constraints and terminal equality constraint. By applying the constraint transcription method and a local smoothing technique to these continuous inequality constraint functions, we construct the corresponding smooth approximate functions. We use the concept of the penalty function to append these smooth approximate functions to the cost function, forming a new cost function. Then, the constrained optimal PID control problem is approximated by a sequence of optimal parameter selection problems subject to only terminal equality constraint. Each of these optimal parameter selection problems can be viewed and hence solved as a nonlinear optimization problem. The gradient formulas of the new appended cost function and the terminal equality constraint function are derived, and a reliable computation algorithm is given. The method proposed is used to solve a ship steering control problem.
Citation: Bin Li, Kok Lay Teo, Cheng-Chew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1101-1117. doi: 10.3934/dcdsb.2011.16.1101
References:
[1]

J. Van Amerongen, Adaptive steering of ships-a model reference approach, Automatica, 20 (1984), 3-14. doi: 10.1016/0005-1098(84)90060-8.

[2]

M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres," Hydro and Aerodynamics Lab. Report No. Hy-14, Denmark, 1969.

[3]

D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship," First IFAC/IFIP Symosium on Ship Operation Automation, Oslo, 1973.

[4]

J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient, IEEE Journal of Oceanic Engineering, 32 (2007), 346-352.

[5]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual,", 1991., (). 

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.

[7]

C. C. Lim and W. Forsythe, Autopilot for ship control, IEE Procedings, 130 (1983), 281-294.

[8]

C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization, 5 (2009), 835-850. doi: 10.3934/jimo.2009.5.835.

[9]

R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems, IEEE Transactions on Automatic Control, 54 (2009), 2455-2460. doi: 10.1109/TAC.2009.2029310.

[10]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257. doi: 10.1016/j.automatica.2009.05.029.

[11]

V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control, Control Theory and Advanced Technology, 10 (1994), 793-814.

[12]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.

[13]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, J. Austral. Math. Soc. Ser. B, 40 (1999), 314-335. doi: 10.1017/S0334270000010936.

[14]

K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering, Journal of Optimization Theory and Applicaitons, 56 (1988), 145-156. doi: 10.1007/BF00938530.

[15]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792. doi: 10.1016/0005-1098(93)90076-6.

[16]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450. doi: 10.3934/jimo.2006.2.435.

show all references

References:
[1]

J. Van Amerongen, Adaptive steering of ships-a model reference approach, Automatica, 20 (1984), 3-14. doi: 10.1016/0005-1098(84)90060-8.

[2]

M. I. Bech and L. Wangner Smitt, "Analogue Simulation of Ship Manoeuvres," Hydro and Aerodynamics Lab. Report No. Hy-14, Denmark, 1969.

[3]

D. L. Brooke, "The Design of a New Automaticpilot for the Comerical Ship," First IFAC/IFIP Symosium on Ship Operation Automation, Oslo, 1973.

[4]

J. Du, C. Guo, S. Yu and Y. Zhao, Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient, IEEE Journal of Oceanic Engineering, 32 (2007), 346-352.

[5]

L. S. Jennings, M. E. Fisher, K. L. Teo and C. J. Goh, "MISER3, Version 3: Optimal Control Software, Theory and User Manual,", 1991., (). 

[6]

L. S. Jennings and K. L. Teo, A computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 26 (1990), 371-375. doi: 10.1016/0005-1098(90)90131-Z.

[7]

C. C. Lim and W. Forsythe, Autopilot for ship control, IEE Procedings, 130 (1983), 281-294.

[8]

C. Y. Liu, Z. H. Gong and E. M. Feng, Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture, Journal of Industrial and Management Optimization, 5 (2009), 835-850. doi: 10.3934/jimo.2009.5.835.

[9]

R. Loxton, K. L. Teo and V. Rehbock, Computational method for a class of swtiched system optimal control problems, IEEE Transactions on Automatic Control, 54 (2009), 2455-2460. doi: 10.1109/TAC.2009.2029310.

[10]

R. Loxton, K. L. Teo, V. Rehbock and K. F. C. Yiu, Optimal control problems with a continuous inequality constraint on the state and the control, Automatica, 45 (2009), 2250-2257. doi: 10.1016/j.automatica.2009.05.029.

[11]

V. Rehbock, C. C. Lim and K. L. Teo, A stable constrained optimal model following controller for discrete-time nonlinear systems affine in control, Control Theory and Advanced Technology, 10 (1994), 793-814.

[12]

K. L. Teo, C. J. Goh and K. H. Wong, "A Unified Computational Approach for Optimal Control Problems," Pitman Monographs and Surveys in Pure and Applied Mathematics, 55, Longman Scientific & Technical, Harlow, copublished in the United States with John Wiley & Sons, Inc., New York, 1991.

[13]

K. L. Teo, L. S. Jennings, H. W. J. Lee and V. Rehbock, The control parameterization enhancing transform for constrained optimal control problems, J. Austral. Math. Soc. Ser. B, 40 (1999), 314-335. doi: 10.1017/S0334270000010936.

[14]

K. L. Teo and C. C. Lim, Time optimal control computation with application to ship steering, Journal of Optimization Theory and Applicaitons, 56 (1988), 145-156. doi: 10.1007/BF00938530.

[15]

K. L. Teo, V. Rehbock and L. S. Jennings, A new computational algorithm for functional inequality constrained optimization problems, Automatica J. IFAC, 29 (1993), 789-792. doi: 10.1016/0005-1098(93)90076-6.

[16]

C. Z. Wu and K. L. Teo, Global impulsive optimal control computation, Journal of Industrial and Management Optimization, 2 (2006), 435-450. doi: 10.3934/jimo.2006.2.435.

[1]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[2]

Ryan Loxton, Qun Lin, Volker Rehbock, Kok Lay Teo. Control parameterization for optimal control problems with continuous inequality constraints: New convergence results. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 571-599. doi: 10.3934/naco.2012.2.571

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895-910. doi: 10.3934/jimo.2010.6.895

[5]

Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 585-601. doi: 10.3934/jimo.2009.5.585

[6]

Heinz Schättler, Urszula Ledzewicz, Helmut Maurer. Sufficient conditions for strong local optimality in optimal control problems with $L_{2}$-type objectives and control constraints. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2657-2679. doi: 10.3934/dcdsb.2014.19.2657

[7]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial and Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[8]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[9]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial and Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

[10]

Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021

[11]

Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629

[12]

John T. Betts, Stephen L. Campbell, Claire Digirolamo. Initial guess sensitivity in computational optimal control problems. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 39-43. doi: 10.3934/naco.2019031

[13]

Divya Thakur, Belinda Marchand. Hybrid optimal control for HIV multi-drug therapies: A finite set control transcription approach. Mathematical Biosciences & Engineering, 2012, 9 (4) : 899-914. doi: 10.3934/mbe.2012.9.899

[14]

Jianling Li, Chunting Lu, Youfang Zeng. A smooth QP-free algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 115-126. doi: 10.3934/naco.2015.5.115

[15]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[16]

Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016

[17]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[18]

Bin Li, Xiaolong Guo, Xiaodong Zeng, Songyi Dian, Minhua Guo. An optimal pid tuning method for a single-link manipulator based on the control parametrization technique. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1813-1823. doi: 10.3934/dcdss.2020107

[19]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial and Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[20]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (187)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]