\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A spectral PRP conjugate gradient methods for nonconvex optimization problem based on modified line search

Abstract Related Papers Cited by
  • In this paper, a new spectral PRP conjugate gradient algorithm is developed for solving nonconvex unconstrained optimization problems. The search direction in this algorithm is proved to be a sufficient descent direction of the objective function independent of line search. To rule out possible unacceptably short step in the Armijo line search, a modified Armijo line search strategy is presented. The obtained step length is improved by employing the properties of the approximate Wolfe conditions. Under some suitable assumptions, the global convergence of the developed algorithm is established. Numerical experiments demonstrate that this algorithm is promising.
    Mathematics Subject Classification: Primary: 90C30, 90C53; Secondary: 65K05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained optimization, Studies in Informatics and Control, 16 (2007), 333-352.

    [2]

    N. Andrei, Acceleration of conjugate gradient algorithms for unconstrained optimization, Applied Mathematics and Computation, 213 (2009), 361-369.doi: 10.1016/j.amc.2009.03.020.

    [3]

    N. Andrei, Open problems in conjugate gradient algorithms for unconstrained optimization, Bulletin of the Malaysian Mathematical Sciences Society, accepted, 2011.

    [4]

    A. Antoniou and W. S. Lu, "Practical Optimization: Algorithms and Engineering Applications,'' Springer, New York, 2007.

    [5]

    E. Birgin and J. M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim., 43 (2001), 117-128.doi: 10.1007/s00245-001-0003-0.

    [6]

    E. Feireisl, F. Issard-Roch and H. Petzeltová, Long-time behaviour and convergence towards equilibria for a conserved phase field model. Partial differential equations and applications, Discrete Contin. Dyn. Syst., 10 (2004), 239-252.

    [7]

    J. C. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim., 2 (1992), 21-42.doi: 10.1137/0802003.

    [8]

    L. Grippo and S. Lucidi, A globally convergent version of the Polak-Ribière conjugate gradient method, Math. Prog., 78 (1997), 375-391.doi: 10.1007/BF02614362.

    [9]

    M. Gunzburger, S. D. Yang and W. X. Zhu, Analysis and discretization of an optimal control problem for the forced Fisher equation, Discrete and Continuous Dynamical Systems-Series B, 8 (2007), 569-587.doi: 10.3934/dcdsb.2007.8.569.

    [10]

    W. W. Hager and H. C. Zhang, A survey of nonlinear conjugate gradient methods, Pracific J Optim., 2 (2006), 35-58.

    [11]

    Z. Huang and S. Li, Guaranteed descent conjugate gradient methods with modified secant condition, J. Industrial and Management Optim., 4 (2008), 739-755.doi: 10.3934/jimo.2008.4.739.

    [12]

    G. Li, L. Guan and G. Yu, Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property, J. Industrial and Management Optim., 4 (2008), 565-579.doi: 10.3934/jimo.2008.4.565.

    [13]

    J. Nocedal and J. S. Wright, "Numerical Optimization,'' Springer Series in Operations Research, Springer-Verlag, New York, 1999.doi: 10.1007/b98874.

    [14]

    E. Polak and G. Ribiére, Note sur la convergence de méthodes de directions conjuguées, Rev. Française Infomat. Recherche Opérationnelle, 3 (1969), 35-43.

    [15]

    B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comput. Math. Math. Phys., 9 (1969), 94-112.doi: 10.1016/0041-5553(69)90035-4.

    [16]

    M. J. D. Powell, Restart procedures of the conjugate gradient method, Math. Program., 12 (1977), 241-254.doi: 10.1007/BF01593790.

    [17]

    M. J. D. Powell, Nonconvex minimization calculations and the conjugate gradient method, in "Numerical Anaysis" (Dundee, 1983), Lecture Notes in Mathematics, 1066, Springer, Berlin, (1984), 122-141.

    [18]

    Z. J. Shi and J. Shen, Convergence of the Polak-Ribiére-Polyak conjugate gradient method, Nonlinear Analysis, 66 (2007), 1428-1441.doi: 10.1016/j.na.2006.02.001.

    [19]

    J. Sun and J. P. Zhang, Global convergence of conjugate gradient methods without line search, Annals of Operations Research, 103 (2001), 161-173.doi: 10.1023/A:1012903105391.

    [20]

    Z. Wan, X. D. Zheng and Y. Y. Fei, Hybrid Armijo-Wolfe line search strategy and its applications in newton method for unconstrained optimization, working paper, 2010.

    [21]

    Z. Wan, Z. L. Yang and Y. L. Wang, New spectral PRP conjugate gradient method for unconstrained optimization, Appl. Math. Letter, 24 (2011), 16-22.doi: 10.1016/j.aml.2010.08.002.

    [22]

    C. Wang, Y. Chen and S. Du, Further insight into the Shamanskii modification of Newton method, Appl. Math. Comput., 180 (2006), 46-52.doi: 10.1016/j.amc.2005.11.167.

    [23]

    G. H. Yu, L. T. Guan and Z. X. Wei, Globally convergent Polak-Ribiére-Polyak conjugate gradient methods under a modified Wolfe line search, Applied Mathematics and Computation, 215 (2009), 3082-3090.

    [24]

    G. L. Yuan, X. W. Lu and Z. X. Wei, A conjugate gradient method with descent direction for unconstrained optimization, Journal of Computational and Applied Mathematics, 233 (2009), 519-530.doi: 10.1016/j.cam.2009.08.001.

    [25]

    L. Zhang, W. J. Zhou and D. H. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104 (2006), 561-572.doi: 10.1007/s00211-006-0028-z.

    [26]

    L. Zhang, W. J. Zhou and D. H. Li, A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal., 26 (2006), 629-640.doi: 10.1093/imanum/drl016.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return