November  2011, 16(4): 1171-1183. doi: 10.3934/dcdsb.2011.16.1171

Numerical simulation of two-fluid flow and meniscus interface movement in the electromagnetic continuous steel casting process

1. 

Department of Mathematics, Faculty of Science, Mahidol University, 272 Rama 6 Road, Bangkok, ZIP 10400

2. 

Department of Mathematics, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand

3. 

Department of Mathematics and Statistics, Curtin University of Technology, GOP Box U1987, Perth, WA 6845, Australia

Received  October 2010 Revised  May 2011 Published  August 2011

This paper presents a mathematical model and numerical technique for simulating the two-fluid flow and the meniscus interface movement in the electromagnetic continuous steel casting process. The governing equations include the continuity equation, the momentum equations, the energy equation, the level set equation and two transport equations for the electromagnetic field derived from the Maxwell's equations. The level set finite element method is applied to trace the movement of the interface between different fluids. In an attempt to optimize the casting process, the technique is then applied to study the influences of the imposed electromagnetic field and the mould oscillation pattern on the fluid flow, the meniscus shape and temperature distribution.
Citation: B. Wiwatanapataphee, Theeradech Mookum, Yong Hong Wu. Numerical simulation of two-fluid flow and meniscus interface movement in the electromagnetic continuous steel casting process. Discrete and Continuous Dynamical Systems - B, 2011, 16 (4) : 1171-1183. doi: 10.3934/dcdsb.2011.16.1171
References:
[1]

J. Archapitak, B. Wiwatanapataphee and Y. H. Wu, A finite element scheme for the determination of electromagnetic force in continuous steel casting, Int. J. Computational and Numerical Analysis and Applications, 5 (2004), 81-95.

[2]

W. J. Boettinger, S. R. Coriell, A. L. Greer, A. Karma, W. Kurz, M. Rappaz and R. Trivedi, Solidification microstructure: Recent developments, future direction, Acta Mater, 48 (2000), 43-70. doi: 10.1016/S1359-6454(99)00287-6.

[3]

J. U. Brackbill, D. Kothe and C. Zemach, A Continuum method for modeling surface tension, J. Comput. Phys., 100 (1992), 335-354. doi: 10.1016/0021-9991(92)90240-Y.

[4]

Y. C. Chang, T. Y. Hou, B. Merriman and S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124 (1996), 449-464. doi: 10.1006/jcph.1996.0072.

[5]

F. Duarte, R. Gormaz and S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries, Comp. Methods Appl. Mech. Engrg., 193 (2004), 4819-4836. doi: 10.1016/j.cma.2004.05.003.

[6]

J. H. Ferziger, Simulation of incompressible turbulent flows, Journal of Computational Physics, 69 (1999), 1-48. doi: 10.1016/0021-9991(87)90154-9.

[7]

V. Girault, H. Lopez and B. Maury, One time-step finite element discretization of the equation of motion of two-fluid flows, Numer Methods Partial Differential Eq., 22 (2006), 680-707. doi: 10.1002/num.20117.

[8]

F. H. Harlow and P. I. Nakayama, Turbulence transport equations, Phys Fluids, 10 (1967), 2323-2328. doi: 10.1063/1.1762039.

[9]

M. D. Gunzburger, "Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms," Computer Science and Scientific Computing, Academic Press, Boston, MA, 1989.

[10]

J. M. Hill and Y.-H. Wu, On a nonlinear Stefan problem arising in the continuous casting of steel, Acta Mechanica, 107 (1994), 183-198. doi: 10.1007/BF01201828.

[11]

J. M. Hill, Y.-H. Wu and B. Wiwatanapataphee, Mathematical analysis of the formation of oscillation marks in the continuous steel casting, Engineering Mathematics, 36 (1999), 311-326.

[12]

D. R. Jenkins and F. R. De Hoog, "Calculation of the Magnetic Field Due to the Electromagnetic Stirring of Molten Steel," Numerical Methods in Engineering'96, John Wiley and Sons Ltd, (1996), 332-336.

[13]

A. Karma, Phase-field formulation for quantitative method of alloy solidification, Phys Rev. Lett., 8711 (2001), art. no. 115701.

[14]

H. Kim, J. Park, H. Jeong and J. Kim, Continuous casting of billet with high frequency electromagnetic field, ISIJ International, 42 (2002), 171-177. doi: 10.2355/isijinternational.42.171.

[15]

B. Li and F. Tsukihashi, Effect of static magnetic field application on the mass transfer in sequence slab continuous casting process, ISIJ International, 41 (2001), 844-850. doi: 10.2355/isijinternational.41.844.

[16]

X-Y. Luo, M-J. Ni, A. Ying and M. Abdou, Application of the level set method for multi-phase flow computation in fusion engineering, Fusion Engineering and Design, 81 (2006), 1521-1526. doi: 10.1016/j.fusengdes.2005.09.051.

[17]

B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes Equations with a free surface, Comp. Fluid Dyn., 6 (1996), 175-188. doi: 10.1080/10618569608940780.

[18]

E. Olssen, G. Kreiss and S. Zahedi, A conservative level set method for two phase flow. II, J. Comput. Phys., 225 (2007), 785-807.

[19]

U. Pasaogullari and C.-Y. Wang, Two-phase modeling and flooding prediction of polymer electrolyte fuel cells, J. of the Electromhemical Society, 152 (2005), A380-A390. doi: 10.1149/1.1850339.

[20]

W. Rodi and D. B. Spalding, A two-parameter model of turbulence and its application to free jets, Warme-und Stofubertragung, 3 (1970), 85-95. doi: 10.1007/BF01108029.

[21]

P. Sivesson, G. Hallen and B. Widell, Improvement of inner quality of continuously cast billets using electromagnetic stirring and thermal soft reduction, Ironmaking & Steelmaking, 25 (1998), 239-246.

[22]

B. G. Thomas, Metallurgical Transactions B, 21 (1990), 387-400.

[23]

B. G. Thomas, Continuous casting: Modelling, in "The Encyclopedia of Advanced Materials" (eds. J. Dantzig, A. Greenwell and J. Michalczyk), Pergamon Elsevier Science Ltd, UK, 2001.

[24]

H. S. Udaykumar, S. Marella and S. Krishman, Sharp-interface simulation of dendritic growth with convection: Benchmarks, Int. J. Heat Mass Transfer, 46 (2003), 2615-2627. doi: 10.1016/S0017-9310(03)00038-3.

[25]

B. Wiwatanapataphee, Y. H. Wu, J. Archapitak, P. F. Siew and B. Unyong, A numerical study of the turbulent flow of molten steel in a domain with a phase-change boundary, Journal of Computational and Applied Mathematics, 166 (2004), 307-319. doi: 10.1016/j.cam.2003.09.020.

[26]

B. Wiwatanapataphee, "Mathematical Modelling of Fluid Flow and Heat Transfer in Continuous Steel Casting Process," Ph.D Thesis, School of Mathematics, Curtin University of Technology, Australia, 1998.

[27]

Y.-H. Wu, J. M. Hill and P. Flint, A novel finite element method for heat transfer in the continuous caster, J. Austral. Math. Soc. Ser. B, 35 (1994), 263-288. doi: 10.1017/S0334270000009292.

[28]

Y. H. Wu and B. Wiwatanapataphee, An Enthalpy control volume method for transient mass and heat transport with solidification, Int. J. of Computational Fluid Dynamics, 18 (2004), 577-584. doi: 10.1080/1061856031000137026.

[29]

Y.-H. Wu and B. Wiwatanapataphee, Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force, Discrete and Continuous Dynamical System Series B, 8 (2007), 695-706. doi: 10.3934/dcdsb.2007.8.695.

[30]

Yi Yang and H. S. Udaykumar, Sharp interface Cartesian method III: Solidification of pure materials and binary solutions, Journal of Computational Physics, 210 (2005), 55-74. doi: 10.1016/j.jcp.2005.04.024.

show all references

References:
[1]

J. Archapitak, B. Wiwatanapataphee and Y. H. Wu, A finite element scheme for the determination of electromagnetic force in continuous steel casting, Int. J. Computational and Numerical Analysis and Applications, 5 (2004), 81-95.

[2]

W. J. Boettinger, S. R. Coriell, A. L. Greer, A. Karma, W. Kurz, M. Rappaz and R. Trivedi, Solidification microstructure: Recent developments, future direction, Acta Mater, 48 (2000), 43-70. doi: 10.1016/S1359-6454(99)00287-6.

[3]

J. U. Brackbill, D. Kothe and C. Zemach, A Continuum method for modeling surface tension, J. Comput. Phys., 100 (1992), 335-354. doi: 10.1016/0021-9991(92)90240-Y.

[4]

Y. C. Chang, T. Y. Hou, B. Merriman and S. Osher, A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J. Comput. Phys., 124 (1996), 449-464. doi: 10.1006/jcph.1996.0072.

[5]

F. Duarte, R. Gormaz and S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries, Comp. Methods Appl. Mech. Engrg., 193 (2004), 4819-4836. doi: 10.1016/j.cma.2004.05.003.

[6]

J. H. Ferziger, Simulation of incompressible turbulent flows, Journal of Computational Physics, 69 (1999), 1-48. doi: 10.1016/0021-9991(87)90154-9.

[7]

V. Girault, H. Lopez and B. Maury, One time-step finite element discretization of the equation of motion of two-fluid flows, Numer Methods Partial Differential Eq., 22 (2006), 680-707. doi: 10.1002/num.20117.

[8]

F. H. Harlow and P. I. Nakayama, Turbulence transport equations, Phys Fluids, 10 (1967), 2323-2328. doi: 10.1063/1.1762039.

[9]

M. D. Gunzburger, "Finite Element Methods for Viscous Incompressible Flows. A Guide to Theory, Practice, and Algorithms," Computer Science and Scientific Computing, Academic Press, Boston, MA, 1989.

[10]

J. M. Hill and Y.-H. Wu, On a nonlinear Stefan problem arising in the continuous casting of steel, Acta Mechanica, 107 (1994), 183-198. doi: 10.1007/BF01201828.

[11]

J. M. Hill, Y.-H. Wu and B. Wiwatanapataphee, Mathematical analysis of the formation of oscillation marks in the continuous steel casting, Engineering Mathematics, 36 (1999), 311-326.

[12]

D. R. Jenkins and F. R. De Hoog, "Calculation of the Magnetic Field Due to the Electromagnetic Stirring of Molten Steel," Numerical Methods in Engineering'96, John Wiley and Sons Ltd, (1996), 332-336.

[13]

A. Karma, Phase-field formulation for quantitative method of alloy solidification, Phys Rev. Lett., 8711 (2001), art. no. 115701.

[14]

H. Kim, J. Park, H. Jeong and J. Kim, Continuous casting of billet with high frequency electromagnetic field, ISIJ International, 42 (2002), 171-177. doi: 10.2355/isijinternational.42.171.

[15]

B. Li and F. Tsukihashi, Effect of static magnetic field application on the mass transfer in sequence slab continuous casting process, ISIJ International, 41 (2001), 844-850. doi: 10.2355/isijinternational.41.844.

[16]

X-Y. Luo, M-J. Ni, A. Ying and M. Abdou, Application of the level set method for multi-phase flow computation in fusion engineering, Fusion Engineering and Design, 81 (2006), 1521-1526. doi: 10.1016/j.fusengdes.2005.09.051.

[17]

B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes Equations with a free surface, Comp. Fluid Dyn., 6 (1996), 175-188. doi: 10.1080/10618569608940780.

[18]

E. Olssen, G. Kreiss and S. Zahedi, A conservative level set method for two phase flow. II, J. Comput. Phys., 225 (2007), 785-807.

[19]

U. Pasaogullari and C.-Y. Wang, Two-phase modeling and flooding prediction of polymer electrolyte fuel cells, J. of the Electromhemical Society, 152 (2005), A380-A390. doi: 10.1149/1.1850339.

[20]

W. Rodi and D. B. Spalding, A two-parameter model of turbulence and its application to free jets, Warme-und Stofubertragung, 3 (1970), 85-95. doi: 10.1007/BF01108029.

[21]

P. Sivesson, G. Hallen and B. Widell, Improvement of inner quality of continuously cast billets using electromagnetic stirring and thermal soft reduction, Ironmaking & Steelmaking, 25 (1998), 239-246.

[22]

B. G. Thomas, Metallurgical Transactions B, 21 (1990), 387-400.

[23]

B. G. Thomas, Continuous casting: Modelling, in "The Encyclopedia of Advanced Materials" (eds. J. Dantzig, A. Greenwell and J. Michalczyk), Pergamon Elsevier Science Ltd, UK, 2001.

[24]

H. S. Udaykumar, S. Marella and S. Krishman, Sharp-interface simulation of dendritic growth with convection: Benchmarks, Int. J. Heat Mass Transfer, 46 (2003), 2615-2627. doi: 10.1016/S0017-9310(03)00038-3.

[25]

B. Wiwatanapataphee, Y. H. Wu, J. Archapitak, P. F. Siew and B. Unyong, A numerical study of the turbulent flow of molten steel in a domain with a phase-change boundary, Journal of Computational and Applied Mathematics, 166 (2004), 307-319. doi: 10.1016/j.cam.2003.09.020.

[26]

B. Wiwatanapataphee, "Mathematical Modelling of Fluid Flow and Heat Transfer in Continuous Steel Casting Process," Ph.D Thesis, School of Mathematics, Curtin University of Technology, Australia, 1998.

[27]

Y.-H. Wu, J. M. Hill and P. Flint, A novel finite element method for heat transfer in the continuous caster, J. Austral. Math. Soc. Ser. B, 35 (1994), 263-288. doi: 10.1017/S0334270000009292.

[28]

Y. H. Wu and B. Wiwatanapataphee, An Enthalpy control volume method for transient mass and heat transport with solidification, Int. J. of Computational Fluid Dynamics, 18 (2004), 577-584. doi: 10.1080/1061856031000137026.

[29]

Y.-H. Wu and B. Wiwatanapataphee, Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force, Discrete and Continuous Dynamical System Series B, 8 (2007), 695-706. doi: 10.3934/dcdsb.2007.8.695.

[30]

Yi Yang and H. S. Udaykumar, Sharp interface Cartesian method III: Solidification of pure materials and binary solutions, Journal of Computational Physics, 210 (2005), 55-74. doi: 10.1016/j.jcp.2005.04.024.

[1]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems and Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[2]

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838

[3]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[4]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[5]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[6]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[7]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[8]

Kai Qu, Qi Dong, Chanjie Li, Feiyu Zhang. Finite element method for two-dimensional linear advection equations based on spline method. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2471-2485. doi: 10.3934/dcdss.2021056

[9]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[10]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[11]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic and Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[12]

Jiaping Yu, Haibiao Zheng, Feng Shi, Ren Zhao. Two-grid finite element method for the stabilization of mixed Stokes-Darcy model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 387-402. doi: 10.3934/dcdsb.2018109

[13]

Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541

[14]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[15]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[16]

Long Fan, Cheng-Jie Liu, Lizhi Ruan. Local well-posedness of solutions to the boundary layer equations for compressible two-fluid flow. Electronic Research Archive, 2021, 29 (6) : 4009-4050. doi: 10.3934/era.2021070

[17]

Jingzhi Li, Hongyu Liu, Qi Wang. Fast imaging of electromagnetic scatterers by a two-stage multilevel sampling method. Discrete and Continuous Dynamical Systems - S, 2015, 8 (3) : 547-561. doi: 10.3934/dcdss.2015.8.547

[18]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[19]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[20]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (113)
  • HTML views (0)
  • Cited by (0)

[Back to Top]