-
Previous Article
On a class of three dimensional Navier-Stokes equations with bounded delay
- DCDS-B Home
- This Issue
-
Next Article
Travelling waves of a reaction-diffusion model for the acidic nitrate-ferroin reaction
Existence theorem for a model of dryland vegetation
1. | 18-20 Avenue De La République, 92400, Courbevoie, France |
2. | Laboratoire d'Analyse Numérique, Université Paris Sud, Orsay, France |
3. | Institute for Dryland Environmental Research, BIDR, Ben-Gurion University, Sede Boqer campus 84990, Israel |
4. | The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, 47205, United States |
References:
[1] |
J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1968), 5042-5044. |
[2] |
F. Borgogno, P. D'Odorico, F. Laio and L. Ridolfi, Mathematical models of vegetation pattern formation in ecohydrology, Rev. Geophysics, 47 (2009), RG1005.
doi: 10.1029/2007RG000256. |
[3] |
E. Feireisl, D. Hilhorst, M. Mimura and R. Weidenfeld, On a nonlinear diffusion system with resource-consumer interaction, Hiroshima Math. J., 33 (2003), 253-295. |
[4] |
E. Gilad, M. Shachak and E. Meron, Dynamicsa and spatial organization of plant communities in water limites systems, Ther. Popul. Biol., 72 (2007), 214-230.
doi: 10.1016/j.tpb.2007.05.002. |
[5] |
E. Gilad and J. von Hardenberg, A fast algorithm for convolution integrals with space and time variant kernels, J. Comput. Phys., 216 (2006), 326-336.
doi: 10.1016/j.jcp.2005.12.003. |
[6] |
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron, Ecosystem engineers: from pattern formation to habitat creation, Phy. Rev. Lett., 98 (2004), 098105-1-098105-4. |
[7] |
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron, A mathematical model of plants as ecosystem engineers, J. Ther. Biol., 244 (2007), 680-691.
doi: 10.1016/j.jtbi.2006.08.006. |
[8] |
E. Meron, H. Yizhanq and E. Gilad, Localized structures in dryland vegetaion: forms and functions, Chaos, 17 (2007), 139-144.
doi: 10.1063/1.2767246. |
[9] |
M. Scheffer, S. Carpenter, J. A. Foley, C. Folke and B. Walkerk, Catastrophic shifts in ecosystem, Nature, 413 (2001), 591-596.
doi: 10.1038/35098000. |
[10] |
R. Temam, "Navier Stokes Equations and Nonlinear Functional Analysis," American Mathematical Society, 2001. |
[11] |
J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetatio patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101-1-198101-4.
doi: 10.1103/PhysRevLett.87.198101. |
[12] |
J. von Hardenberg, A. Y. Kletter, H. Yizhaq, J. Nathan and E. Meron, Periodic vs. scale-free patterns in dryland vegetation, Proc. R. Soc. B., 277 (2010), 1771-1776.
doi: 10.1098/rspb.2009.2208. |
[13] |
H. Yizhaq, E. Gilad and E. Meron, Banded vegetation: Biological productivity and resilience, Physica A, 356 (2005), 139-144.
doi: 10.1016/j.physa.2005.05.026. |
show all references
References:
[1] |
J. P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1968), 5042-5044. |
[2] |
F. Borgogno, P. D'Odorico, F. Laio and L. Ridolfi, Mathematical models of vegetation pattern formation in ecohydrology, Rev. Geophysics, 47 (2009), RG1005.
doi: 10.1029/2007RG000256. |
[3] |
E. Feireisl, D. Hilhorst, M. Mimura and R. Weidenfeld, On a nonlinear diffusion system with resource-consumer interaction, Hiroshima Math. J., 33 (2003), 253-295. |
[4] |
E. Gilad, M. Shachak and E. Meron, Dynamicsa and spatial organization of plant communities in water limites systems, Ther. Popul. Biol., 72 (2007), 214-230.
doi: 10.1016/j.tpb.2007.05.002. |
[5] |
E. Gilad and J. von Hardenberg, A fast algorithm for convolution integrals with space and time variant kernels, J. Comput. Phys., 216 (2006), 326-336.
doi: 10.1016/j.jcp.2005.12.003. |
[6] |
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron, Ecosystem engineers: from pattern formation to habitat creation, Phy. Rev. Lett., 98 (2004), 098105-1-098105-4. |
[7] |
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron, A mathematical model of plants as ecosystem engineers, J. Ther. Biol., 244 (2007), 680-691.
doi: 10.1016/j.jtbi.2006.08.006. |
[8] |
E. Meron, H. Yizhanq and E. Gilad, Localized structures in dryland vegetaion: forms and functions, Chaos, 17 (2007), 139-144.
doi: 10.1063/1.2767246. |
[9] |
M. Scheffer, S. Carpenter, J. A. Foley, C. Folke and B. Walkerk, Catastrophic shifts in ecosystem, Nature, 413 (2001), 591-596.
doi: 10.1038/35098000. |
[10] |
R. Temam, "Navier Stokes Equations and Nonlinear Functional Analysis," American Mathematical Society, 2001. |
[11] |
J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetatio patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101-1-198101-4.
doi: 10.1103/PhysRevLett.87.198101. |
[12] |
J. von Hardenberg, A. Y. Kletter, H. Yizhaq, J. Nathan and E. Meron, Periodic vs. scale-free patterns in dryland vegetation, Proc. R. Soc. B., 277 (2010), 1771-1776.
doi: 10.1098/rspb.2009.2208. |
[13] |
H. Yizhaq, E. Gilad and E. Meron, Banded vegetation: Biological productivity and resilience, Physica A, 356 (2005), 139-144.
doi: 10.1016/j.physa.2005.05.026. |
[1] |
Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399 |
[2] |
Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275 |
[3] |
Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199 |
[4] |
Fabio Paronetto. Elliptic approximation of forward-backward parabolic equations. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1017-1036. doi: 10.3934/cpaa.2020047 |
[5] |
Yanqing Wang. A semidiscrete Galerkin scheme for backward stochastic parabolic differential equations. Mathematical Control and Related Fields, 2016, 6 (3) : 489-515. doi: 10.3934/mcrf.2016013 |
[6] |
Xiaomeng Li, Qiang Xu, Ailing Zhu. Weak Galerkin mixed finite element methods for parabolic equations with memory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 513-531. doi: 10.3934/dcdss.2019034 |
[7] |
Ioana Ciotir. Stochastic porous media equations with divergence Itô noise. Evolution Equations and Control Theory, 2020, 9 (2) : 375-398. doi: 10.3934/eect.2020010 |
[8] |
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781-790. doi: 10.3934/proc.2013.2013.781 |
[9] |
J. Carmelo Flores, Luz De Teresa. Null controllability of one dimensional degenerate parabolic equations with first order terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3963-3981. doi: 10.3934/dcdsb.2020136 |
[10] |
Morteza Fotouhi, Leila Salimi. Controllability results for a class of one dimensional degenerate/singular parabolic equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1415-1430. doi: 10.3934/cpaa.2013.12.1415 |
[11] |
Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. The cost of controlling weakly degenerate parabolic equations by boundary controls. Mathematical Control and Related Fields, 2017, 7 (2) : 171-211. doi: 10.3934/mcrf.2017006 |
[12] |
Piermarco Cannarsa, Patrick Martinez, Judith Vancostenoble. Persistent regional null contrillability for a class of degenerate parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (4) : 607-635. doi: 10.3934/cpaa.2004.3.607 |
[13] |
Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203 |
[14] |
Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455 |
[15] |
El Mustapha Ait Ben Hassi, Mohamed Fadili, Lahcen Maniar. Controllability of a system of degenerate parabolic equations with non-diagonalizable diffusion matrix. Mathematical Control and Related Fields, 2020, 10 (3) : 623-642. doi: 10.3934/mcrf.2020013 |
[16] |
Hiroshi Watanabe. Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 177-189. doi: 10.3934/dcdss.2014.7.177 |
[17] |
Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (2) : 487-503. doi: 10.3934/cpaa.2007.6.487 |
[18] |
Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873 |
[19] |
Emmanuele DiBenedetto, Ugo Gianazza and Vincenzo Vespri. Intrinsic Harnack estimates for nonnegative local solutions of degenerate parabolic equations. Electronic Research Announcements, 2006, 12: 95-99. |
[20] |
Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1081-1104. doi: 10.3934/dcds.2003.9.1081 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]