July  2011, 16(1): 265-282. doi: 10.3934/dcdsb.2011.16.265

A rigorous derivation of hemitropy in nonlinearly elastic rods

1. 

Department of Mathematics and Department of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY, United States

Received  April 2010 Revised  September 2010 Published  April 2011

We consider a class of nonlinearly hyperelastic rods with helical symmetry, cf. [7]. Such a rod is mechanically invariant under the symmetries of a circular-cylindrical helix. Examples include idealized DNA molecules, wire ropes and cables. We examine the limit as the pitch of the helix characterizing the symmetry approaches zero and show that the resulting model is a hemitropic rod. The former is mechanically invariant under all proper rotations about its centerline and generally possesses chirality or handedness in its mechanical response, cf. [7]. An isotropic rod is also rotationally invariant but, in addition, enjoys certain reflection symmetries, which rule out chirality. Isotropy implies hemitropy, but the converse is not generally true. We employ both averaging methods and methods of gamma convergence to obtain the effective or homogenized (hemitropic) problem, the latter not corresponding to a naïve average.
Citation: Timothy J. Healey. A rigorous derivation of hemitropy in nonlinearly elastic rods. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 265-282. doi: 10.3934/dcdsb.2011.16.265
References:
[1]

S. S. Antman, "Problems of Nonlinear Elasticity," Springer-Verlag, New York, 2cnd edition, 2005.

[2]

J. M. Ball, Remarques sur l'existence et la régularité des solutions d'elatostatique non linéar, Recent Contributions to Nonlinear Partial Differential Equations, eds., H Berestycki & H. Brezis, Pitman, London, (1981), 50-62.

[3]

A. Braides, "Gamma Convergence for Beginners,'' Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[4]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,'' Oxford University Press, Oxford, 2002.

[5]

B. Dacorogna, "Direct Methods in the Calculus of Variations,'' Springer-Verlag, New York, 1989.

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields,'' Springer-Verlag, New York, 1983.

[7]

T. J. Healey, Material symmetry and chirality in nonlinearly elastic rods, Math. Mech. Solids, 7 (2002), 405-420.

[8]

T. J. Healey and P. Mehta, Straightforward computation of spatial equilibria of geometrically exact Cosserat rods, Int. J. Bifur.Chaos, 15 (2005), 949-965. doi: 10.1142/S0218127405012387.

[9]

J. Jost and X. Li-Jost, "Calculus of Variations,'' Cambridge University Press, Cambridge, 2008.

[10]

S. Kerhbaum and J. H. Maddocks, Effective properties of elastic rods with high intrinsic twist, in M. Deville and R. Owens, editors, "Proceedings of the 16th IMACS World Congress 2000,'' pp. 1-8, 2000.

[11]

S. Mudaliar, M. Eng. Report, Cornell University, 2009.

[12]

R. T. Rockafellar, "Convex Analysis,'' Princeton University Press, Princeton, N.J., 1970.

show all references

References:
[1]

S. S. Antman, "Problems of Nonlinear Elasticity," Springer-Verlag, New York, 2cnd edition, 2005.

[2]

J. M. Ball, Remarques sur l'existence et la régularité des solutions d'elatostatique non linéar, Recent Contributions to Nonlinear Partial Differential Equations, eds., H Berestycki & H. Brezis, Pitman, London, (1981), 50-62.

[3]

A. Braides, "Gamma Convergence for Beginners,'' Oxford University Press, Oxford, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[4]

D. Cioranescu and P. Donato, "An Introduction to Homogenization,'' Oxford University Press, Oxford, 2002.

[5]

B. Dacorogna, "Direct Methods in the Calculus of Variations,'' Springer-Verlag, New York, 1989.

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillation, Dynamical Systems, and Bifurcations of Vector Fields,'' Springer-Verlag, New York, 1983.

[7]

T. J. Healey, Material symmetry and chirality in nonlinearly elastic rods, Math. Mech. Solids, 7 (2002), 405-420.

[8]

T. J. Healey and P. Mehta, Straightforward computation of spatial equilibria of geometrically exact Cosserat rods, Int. J. Bifur.Chaos, 15 (2005), 949-965. doi: 10.1142/S0218127405012387.

[9]

J. Jost and X. Li-Jost, "Calculus of Variations,'' Cambridge University Press, Cambridge, 2008.

[10]

S. Kerhbaum and J. H. Maddocks, Effective properties of elastic rods with high intrinsic twist, in M. Deville and R. Owens, editors, "Proceedings of the 16th IMACS World Congress 2000,'' pp. 1-8, 2000.

[11]

S. Mudaliar, M. Eng. Report, Cornell University, 2009.

[12]

R. T. Rockafellar, "Convex Analysis,'' Princeton University Press, Princeton, N.J., 1970.

[1]

Jonatan Lenells. Traveling waves in compressible elastic rods. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 151-167. doi: 10.3934/dcdsb.2006.6.151

[2]

Alaa Hayek, Serge Nicaise, Zaynab Salloum, Ali Wehbe. Exponential and polynomial stability results for networks of elastic and thermo-elastic rods. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1183-1220. doi: 10.3934/dcdss.2021142

[3]

David L. Russell. Trace properties of certain damped linear elastic systems. Evolution Equations and Control Theory, 2013, 2 (4) : 711-721. doi: 10.3934/eect.2013.2.711

[4]

Mircea Bîrsan, Holm Altenbach. On the Cosserat model for thin rods made of thermoelastic materials with voids. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1473-1485. doi: 10.3934/dcdss.2013.6.1473

[5]

Stuart S. Antman. Regularity properties of planar motions of incompressible rods. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 481-494. doi: 10.3934/dcdsb.2003.3.481

[6]

J. A. Barceló, M. Folch-Gabayet, S. Pérez-Esteva, A. Ruiz, M. C. Vilela. Elastic Herglotz functions in the plane. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1495-1505. doi: 10.3934/cpaa.2010.9.1495

[7]

Kewei Zhang. On equality of relaxations for linear elastic strains. Communications on Pure and Applied Analysis, 2002, 1 (4) : 565-573. doi: 10.3934/cpaa.2002.1.565

[8]

Zhijian Yang, Ke Li. Longtime dynamics for an elastic waveguide model. Conference Publications, 2013, 2013 (special) : 797-806. doi: 10.3934/proc.2013.2013.797

[9]

Jun Guo, Qinghua Wu, Guozheng Yan. The factorization method for cracks in elastic scattering. Inverse Problems and Imaging, 2018, 12 (2) : 349-371. doi: 10.3934/ipi.2018016

[10]

Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10

[11]

Giovanni Alberti, Giuseppe Buttazzo, Serena Guarino Lo Bianco, Édouard Oudet. Optimal reinforcing networks for elastic membranes. Networks and Heterogeneous Media, 2019, 14 (3) : 589-615. doi: 10.3934/nhm.2019023

[12]

Peijun Li, Xiaokai Yuan. Inverse obstacle scattering for elastic waves in three dimensions. Inverse Problems and Imaging, 2019, 13 (3) : 545-573. doi: 10.3934/ipi.2019026

[13]

David Russell. Structural parameter optimization of linear elastic systems. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1517-1536. doi: 10.3934/cpaa.2011.10.1517

[14]

I. D. Chueshov. Interaction of an elastic plate with a linearized inviscid incompressible fluid. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1759-1778. doi: 10.3934/cpaa.2014.13.1759

[15]

Fei Meng, Xiao-Ping Yang. Elastic limit and vanishing external force for granular systems. Kinetic and Related Models, 2019, 12 (1) : 159-176. doi: 10.3934/krm.2019007

[16]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[17]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial and Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

[18]

Nuno F. M. Martins. Detecting the localization of elastic inclusions and Lamé coefficients. Inverse Problems and Imaging, 2014, 8 (3) : 779-794. doi: 10.3934/ipi.2014.8.779

[19]

Darko Volkov, Joan Calafell Sandiumenge. A stochastic approach to reconstruction of faults in elastic half space. Inverse Problems and Imaging, 2019, 13 (3) : 479-511. doi: 10.3934/ipi.2019024

[20]

Martin Bauer, Martins Bruveris, Philipp Harms, Peter W. Michor. Soliton solutions for the elastic metric on spaces of curves. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1161-1185. doi: 10.3934/dcds.2018049

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (143)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]