July  2011, 16(1): 345-360. doi: 10.3934/dcdsb.2011.16.345

Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system

1. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234

Received  February 2009 Revised  January 2011 Published  April 2011

In this paper, we study a two- and three-dimensional bipolar Euler-Poisson system (hydrodynamic model). The system arises in mathematical modeling for semiconductors and plasmas. We are interested in the steady state isentropic case supplemented by the proper boundary conditions. We first show the existence and uniqueness of irrotational subsonic stationary solutions for the two- and three-dimensional hydrodynamic model. Next, we investigate the zero-electron-mass limit, the zero-relaxation-time limit and the Debye-length (quasi-neutral) limit for above stationary solutions, respectively. For each limit, we show the strong convergence of the sequence of solutions and give the associated convergence rates.
Citation: Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345
References:
[1]

P. Amster and M. P. Beccar Varela, Subsonic solutions to a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 258 (2001), 52-62. doi: 10.1006/jmaa.2000.7359.

[2]

A. Ambrose, F. Méhats and P. Raviart, On singular perturbation problems for the nonlinear Poisson equation, Asymptot. Anal., 25 (2001), 39-91.

[3]

U. Ascher, P. A. Markowich and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Meth. Appl. Sci., 11 (1991), 347-376. doi: 10.1142/S0218202591000174.

[4]

H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas, C. R. Acad. Sci. Paris, 321 (1995), 953-959.

[5]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113. doi: 10.1080/03605300008821542.

[6]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Letters, 3 (1990), 25-29. doi: 10.1016/0893-9659(90)90130-4.

[7]

P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Ann. Math. Pura Appl.(4), 165 (1993), 87-98.

[8]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations, 17 (1992), 553-577.

[9]

T. Goudon, A. Jüngel and Y.-J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas, Appl. Math. Letters, 12 (1999), 75-79. doi: 10.1016/S0893-9659(99)00038-5.

[10]

D. Gilbarg and N. S. Trüdinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1998.

[11]

L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift diffusion equations, J. Differential Equations, 165 (2000), 315-354. doi: 10.1006/jdeq.2000.3780.

[12]

A. Jüngel and Y.-J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisted, Z. Angew. Math. Phys., 51 (2000), 385-396. doi: 10.1007/s000330050004.

[13]

A. Jüngel, "Quasi-Hydrodynamic Semiconductor Equations," Progress in Nonlinear Differential Equations, Birkhäuser, 2001.

[14]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dyn. Syst., 5 (1999), 449-455. doi: 10.3934/dcds.1999.5.449.

[15]

Y.-P. Li and J.-Z. Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Math. Comput. Modeling, 49 (2009), 163-177. doi: 10.1016/j.mcm.2008.05.006.

[16]

Y.-P. Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Math. Sci., B28 (2008), 479-488.

[17]

Y.-P. Li, Asymptotic profile in a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 325 (2007), 949-967. doi: 10.1016/j.jmaa.2006.02.018.

[18]

O. A. Ladyzhenskaya and N. U. Uraltsera, "Linear and Quasilinear Elliptic Equations," Academic Press, New York, 1968.

[19]

Y.-P. Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Nonlinear Anal. Real World Appl., 8 (2007), 1235-1251. doi: 10.1016/j.nonrwa.2006.06.011.

[20]

P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew Math. Phys., 42 (1991), 387-407. doi: 10.1007/BF00945711.

[21]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145. doi: 10.1007/BF00379918.

[22]

P. A. Markowich, C. A. Ringhofev and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Wien, New York, 1990.

[23]

Y.-J. Peng, Some analysis in steady-state Euler-Poisson equations for potential flow, Asymp. Anal., 36 (2003), 75-92.

[24]

Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160.

[25]

Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows, Nonlinearity, 17 (2004), 835-849. doi: 10.1088/0951-7715/17/3/006.

[26]

Y.-J. Peng and I. Violet, Asymptotic expansions in a steady state Euler-Poisson equations to incompressible Euler equations, Math. Models Meth. Appl. Sci., 15 (2005), 717-736. doi: 10.1142/S0218202505000546.

[27]

Y.-J. Peng and Y.-F. Yang, Junction layer analysis in one-dimensional steady-state Euler-Poisson equations, J. Math. Anal. Appl., 344 (2008), 440-448. doi: 10.1016/j.jmaa.2008.02.062.

[28]

M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 2003.

[29]

M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci., 11 (2001), 193-209. doi: 10.1007/s00332-001-0004-9.

[30]

I. Violet, High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh, 137 (2007), 1101-1118. doi: 10.1017/S0308210505001216.

[31]

S. Wang, Quasineutral limit of Euler-Poinsson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456. doi: 10.1081/PDE-120030403.

[32]

L.-M. Yeh, On a steady state Euler-Poisson model for semiconductors, Comm. Partial Differential Equations, 21 (1996), 1007-1034. doi: 10.1080/03605309608821216.

[33]

F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490. doi: 10.1016/j.jmaa.2008.10.032.

show all references

References:
[1]

P. Amster and M. P. Beccar Varela, Subsonic solutions to a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 258 (2001), 52-62. doi: 10.1006/jmaa.2000.7359.

[2]

A. Ambrose, F. Méhats and P. Raviart, On singular perturbation problems for the nonlinear Poisson equation, Asymptot. Anal., 25 (2001), 39-91.

[3]

U. Ascher, P. A. Markowich and C. Schmeiser, A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Meth. Appl. Sci., 11 (1991), 347-376. doi: 10.1142/S0218202591000174.

[4]

H. Brézis, F. Golse and R. Sentis, Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann. Quasi-neutralité des plasmas, C. R. Acad. Sci. Paris, 321 (1995), 953-959.

[5]

S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, 25 (2000), 1099-1113. doi: 10.1080/03605300008821542.

[6]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors, Appl. Math. Letters, 3 (1990), 25-29. doi: 10.1016/0893-9659(90)90130-4.

[7]

P. Degond and P. A. Markowich, A steady state potential flow model for semiconductors, Ann. Math. Pura Appl.(4), 165 (1993), 87-98.

[8]

I. M. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Comm. Partial Differential Equations, 17 (1992), 553-577.

[9]

T. Goudon, A. Jüngel and Y.-J. Peng, Zero-mass-electrons limits in hydrodynamic models for plasmas, Appl. Math. Letters, 12 (1999), 75-79. doi: 10.1016/S0893-9659(99)00038-5.

[10]

D. Gilbarg and N. S. Trüdinger, "Elliptic Partial Differential Equations of Second Order," Springer-Verlag, New York, 1998.

[11]

L. Hsiao and K. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift diffusion equations, J. Differential Equations, 165 (2000), 315-354. doi: 10.1006/jdeq.2000.3780.

[12]

A. Jüngel and Y.-J. Peng, Zero-relaxation-time limits in hydrodynamic models for plasmas revisted, Z. Angew. Math. Phys., 51 (2000), 385-396. doi: 10.1007/s000330050004.

[13]

A. Jüngel, "Quasi-Hydrodynamic Semiconductor Equations," Progress in Nonlinear Differential Equations, Birkhäuser, 2001.

[14]

C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dyn. Syst., 5 (1999), 449-455. doi: 10.3934/dcds.1999.5.449.

[15]

Y.-P. Li and J.-Z. Zhang, Stationary solutions for a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Math. Comput. Modeling, 49 (2009), 163-177. doi: 10.1016/j.mcm.2008.05.006.

[16]

Y.-P. Li, Stationary solutions for a one-dimensional nonisentropic hydrodynamic model for semiconductors, Acta Math. Sci., B28 (2008), 479-488.

[17]

Y.-P. Li, Asymptotic profile in a one-dimensional nonisentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 325 (2007), 949-967. doi: 10.1016/j.jmaa.2006.02.018.

[18]

O. A. Ladyzhenskaya and N. U. Uraltsera, "Linear and Quasilinear Elliptic Equations," Academic Press, New York, 1968.

[19]

Y.-P. Li, Asymptotic profile in a multi-dimensional nonisentropic hydrodynamic model for semiconductors, Nonlinear Anal. Real World Appl., 8 (2007), 1235-1251. doi: 10.1016/j.nonrwa.2006.06.011.

[20]

P. A. Markowich, On steady state Euler-Poisson models for semiconductors, Z. Angew Math. Phys., 42 (1991), 387-407. doi: 10.1007/BF00945711.

[21]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Rational Mech. Anal., 129 (1995), 129-145. doi: 10.1007/BF00379918.

[22]

P. A. Markowich, C. A. Ringhofev and C. Schmeiser, "Semiconductor Equations," Springer-Verlag, Wien, New York, 1990.

[23]

Y.-J. Peng, Some analysis in steady-state Euler-Poisson equations for potential flow, Asymp. Anal., 36 (2003), 75-92.

[24]

Y.-J. Peng and Y.-G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160.

[25]

Y.-J. Peng and Y.-G. Wang, Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows, Nonlinearity, 17 (2004), 835-849. doi: 10.1088/0951-7715/17/3/006.

[26]

Y.-J. Peng and I. Violet, Asymptotic expansions in a steady state Euler-Poisson equations to incompressible Euler equations, Math. Models Meth. Appl. Sci., 15 (2005), 717-736. doi: 10.1142/S0218202505000546.

[27]

Y.-J. Peng and Y.-F. Yang, Junction layer analysis in one-dimensional steady-state Euler-Poisson equations, J. Math. Anal. Appl., 344 (2008), 440-448. doi: 10.1016/j.jmaa.2008.02.062.

[28]

M. D. Rosini, A phase analysis of transonic solutions for the hydrodynamic semiconductor model, Quart. Appl. Math., 2003.

[29]

M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci., 11 (2001), 193-209. doi: 10.1007/s00332-001-0004-9.

[30]

I. Violet, High-order expansions in the quasi-neutral limit of the Euler-Poisson system for a potential flow, Proc. Roy. Soc. Edinburgh, 137 (2007), 1101-1118. doi: 10.1017/S0308210505001216.

[31]

S. Wang, Quasineutral limit of Euler-Poinsson system with and without viscosity, Comm. Partial Differential Equations, 29 (2004), 419-456. doi: 10.1081/PDE-120030403.

[32]

L.-M. Yeh, On a steady state Euler-Poisson model for semiconductors, Comm. Partial Differential Equations, 21 (1996), 1007-1034. doi: 10.1080/03605309608821216.

[33]

F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490. doi: 10.1016/j.jmaa.2008.10.032.

[1]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[2]

Qiangchang Ju, Hailiang Li, Yong Li, Song Jiang. Quasi-neutral limit of the two-fluid Euler-Poisson system. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1577-1590. doi: 10.3934/cpaa.2010.9.1577

[3]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

[4]

Shu Wang, Chundi Liu. Boundary Layer Problem and Quasineutral Limit of Compressible Euler-Poisson System. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2177-2199. doi: 10.3934/cpaa.2017108

[5]

Jianwei Yang, Dongling Li, Xiao Yang. On the quasineutral limit for the compressible Euler-Poisson equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022020

[6]

Jiang Xu, Wen-An Yong. Zero-relaxation limit of non-isentropic hydrodynamic models for semiconductors. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1319-1332. doi: 10.3934/dcds.2009.25.1319

[7]

François Delarue, Franco Flandoli. The transition point in the zero noise limit for a 1D Peano example. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4071-4083. doi: 10.3934/dcds.2014.34.4071

[8]

Stefano Galatolo, Hugo Marsan. Quadratic response and speed of convergence of invariant measures in the zero-noise limit. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5303-5327. doi: 10.3934/dcds.2021078

[9]

Razvan C. Fetecau, Hui Huang, Daniel Messenger, Weiran Sun. Zero-diffusion limit for aggregation equations over bounded domains. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022078

[10]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[11]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[12]

Nuno J. Alves, Athanasios E. Tzavaras. The relaxation limit of bipolar fluid models. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 211-237. doi: 10.3934/dcds.2021113

[13]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[14]

M. Pellicer, J. Solà-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 563-577. doi: 10.3934/cpaa.2008.7.563

[15]

Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127

[16]

Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93

[17]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[18]

Hongyun Peng, Lizhi Ruan, Changjiang Zhu. Convergence rates of zero diffusion limit on large amplitude solution to a conservation laws arising in chemotaxis. Kinetic and Related Models, 2012, 5 (3) : 563-581. doi: 10.3934/krm.2012.5.563

[19]

Fucai Li, Zhipeng Zhang. Zero viscosity-resistivity limit for the 3D incompressible magnetohydrodynamic equations in Gevrey class. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4279-4304. doi: 10.3934/dcds.2018187

[20]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]