\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Derivation and stability study of a rigid lid bilayer model

Abstract Related Papers Cited by
  • In this paper we present the derivation of a bilayer shallow water model with rigid lid hypothesis. We start from the incompressible Navier-Stokes equations, we introduce a small parameter $\varepsilon$ which is the ratio between the characteristic height and the characteristic length of the fluids domain. We use a formal asymptotic expansion then we resort to averaging to obtain the model. We also prove the stability of the model, in the following sense, up to a subsequence, every sequence of weak solutions converges to a solution of the model.
    Mathematics Subject Classification: Primary: 35Q35, 35Q30; Secondary: 35B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography, Commun. Math. Sci., 2 (2004), 359-389.

    [2]

    E. Audusse, A multilayer Saint-Venant model: derivation and numerical validation, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 189-214.doi: 10.3934/dcdsb.2005.5.189.

    [3]

    E. Bruce Pitman and Long Le, A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 363 (2005), 1573-1601.

    [4]

    B. Di Martino, P. Orenga and M. Peybernes, On a bi-layer shallow water model with rigid-lid hypothesis, Math. Models Methods Appl. Sci., 15 (2005), 843-869.doi: 10.1142/S0218202505000583.

    [5]

    G. Narbona-Reina, J. D. D. Zabsonré, E. D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for shallow water equations with viscosity. Numerical validation, CMES Comput. Model. Eng. Sci., 43 (2009), 27-71.

    [6]

    B. Di Martino, C. Giacomoni and P. Orenga, Analysis of some shallow water problems with rigid-lid hypothesis, Math. Models Methods Appl. Sci., 11 (2001), 979-999.doi: 10.1142/S0218202501001203.

    [7]

    María Luz Muñoz-Ruiz, Manuel Jesú Castro-Díaz and Carlos Parés, On an one-dimensional bi-layer shallow-water problem, Nonlinear Anal., 53 (2003), 567-600.doi: 10.1016/S0362-546X(02)00137-2.

    [8]

    Philippe Guyenne, David Lannes and Jean-Claude Saut, Well-posedness of the Cauchy problem for models of large amplitude internal waves, Nonlinearity, 23 (2010), 237-275.doi: 10.1088/0951-7715/23/2/003.

    [9]

    D. Bresch and M. Renardy, Well-posedness of two-layer shallow water flow between two horizontal rigid plates, To appear in nonlinearity, 2011.

    [10]

    D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.

    [11]

    J. Simon, "Équation de Navier-Stokes,'' Cours de DEA 2002-2003 Universit Blaise Pascal Clermont-Ferrand.

    [12]

    J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires,'' Dunod, 1969.

    [13]

    A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.doi: 10.1080/03605300600857079.

    [14]

    D. Bresch, B. Desjardins and D. Gérard-Varet, On compressible Navier-Stokes equations with density dependent viscosities in bounded domains, J. Math. Pures Appl. (9), 87 (2007), 227-235.doi: 10.1016/j.matpur.2006.10.010.

    [15]

    F. Boyer and P. Fabrie, "Eléments D'analyse pour L'éetude de Quelques Modèles D'écoulements de Fluides Visqueux Incompressibles,'' Mathématiques & Applications (Berlin) [Mathematics & Applications].

    [16]

    F. Boyer, "Analyse Numérique des edp Elliptiques,'' Cours Master 2 2009 Université Paul Cézanne.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(101) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return