- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Local and global exponential synchronization of complex delayed dynamical networks with general topology
Unboundedness of solutions for perturbed asymmetric oscillators
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
$x'' + f(x )x' + ax^+ - bx^-$ $+ g(x)=p(t), $
where $x^+ =\max\{x,0\}, x^-$ $=\max\{-x,0\}$, $a$ and $b$ are two positive constants, $f(x)$ is a continuous function and $ p(t)$ is a $2\pi $-periodic continuous function, $g(x)$ is locally Lipschitz continuous and bounded. We discuss the existence of periodic solutions and unbounded solutions under two classes of conditions: the resonance case $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\in Q$ and the nonresonance case $\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}} \notin Q$. Unlike many existing results in the literature where the function $g(x)$ is required to have asymptotic limits at infinity, our main results here allow $g(x)$ be oscillatory without asymptotic limits.
References:
[1] |
J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance, Nonlinearity, 9 (1996), 1099-1111.
doi: 10.1088/0951-7715/9/5/003. |
[2] |
J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator, J. Differential Equations, 143 (1998), 201-220.
doi: 10.1006/jdeq.1997.3367. |
[3] |
W. Dambrosio, A note on the existence of unbounded solutions to a perturbed asymmetric oscillator, Nonlinear Anal., 50 (2002), 333-346.
doi: 10.1016/S0362-546X(01)00765-9. |
[4] |
E. N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15 (1976), 321-328.
doi: 10.1017/S0004972700022747. |
[5] |
E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect.A, 76 (1976), 283-300. |
[6] |
S. Fučik, "Sovability of Nonlinear Equations and Boundary Value Problems," D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1980. |
[7] |
M. Kunze, T. Küpper and B. Liu, Boundedness and unboundedness solutions of reversible oscillators at resonance, Nonlinearity, 14 (2001), 1105-1122.
doi: 10.1088/0951-7715/14/5/311. |
[8] |
B. Liu, Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 231 (1999), 355-373.
doi: 10.1006/jmaa.1998.6219. |
[9] |
X. Li and Z. H. Zhang, Unbounded solutions and periodic solutions for second order differential equations with asymmetric nonlinearity, Proc. Amer. Math. Soc., 135 (2007), 2769-2777.
doi: 10.1090/S0002-9939-07-08928-9. |
[10] |
N. J. Lloyd, "Degree Theory," Cambridge University Press, Cambridge-New York-Melbourne, 1978. |
[11] |
S. W. Ma and J. H. Wu, A small twist theorem and boundedness of solutions for semilinear Duffing equations at resonance, Nonlinear Anal., 67 (2007), 200-237.
doi: 10.1016/j.na.2006.04.023. |
[12] |
L. X. Wang and S. W. Ma, Boundedness and unboundedness of solutions for asymmetric oscillators at resonance,, Preprint., ().
|
[13] |
Z. H. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, Sci. China Ser. A, 50 (2007), 1205-1216.
doi: 10.1007/s11425-007-0070-z. |
[14] |
Z. H. Wang, Irrational rotation numbers and unboundedness of solutions of the second order differential equations with asymmetric nonlinearities, Proc. Amer. Math. Soc., 131 (2003), 523-531.
doi: 10.1090/S0002-9939-02-06601-7. |
show all references
References:
[1] |
J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance, Nonlinearity, 9 (1996), 1099-1111.
doi: 10.1088/0951-7715/9/5/003. |
[2] |
J. M. Alonso and R. Ortega, Roots of unity and unbounded motions of an asymmetric oscillator, J. Differential Equations, 143 (1998), 201-220.
doi: 10.1006/jdeq.1997.3367. |
[3] |
W. Dambrosio, A note on the existence of unbounded solutions to a perturbed asymmetric oscillator, Nonlinear Anal., 50 (2002), 333-346.
doi: 10.1016/S0362-546X(01)00765-9. |
[4] |
E. N. Dancer, Boundary-value problems for weakly nonlinear ordinary differential equations, Bull. Austral. Math. Soc., 15 (1976), 321-328.
doi: 10.1017/S0004972700022747. |
[5] |
E. N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect.A, 76 (1976), 283-300. |
[6] |
S. Fučik, "Sovability of Nonlinear Equations and Boundary Value Problems," D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1980. |
[7] |
M. Kunze, T. Küpper and B. Liu, Boundedness and unboundedness solutions of reversible oscillators at resonance, Nonlinearity, 14 (2001), 1105-1122.
doi: 10.1088/0951-7715/14/5/311. |
[8] |
B. Liu, Boundedness in asymmetric oscillations, J. Math. Anal. Appl., 231 (1999), 355-373.
doi: 10.1006/jmaa.1998.6219. |
[9] |
X. Li and Z. H. Zhang, Unbounded solutions and periodic solutions for second order differential equations with asymmetric nonlinearity, Proc. Amer. Math. Soc., 135 (2007), 2769-2777.
doi: 10.1090/S0002-9939-07-08928-9. |
[10] |
N. J. Lloyd, "Degree Theory," Cambridge University Press, Cambridge-New York-Melbourne, 1978. |
[11] |
S. W. Ma and J. H. Wu, A small twist theorem and boundedness of solutions for semilinear Duffing equations at resonance, Nonlinear Anal., 67 (2007), 200-237.
doi: 10.1016/j.na.2006.04.023. |
[12] |
L. X. Wang and S. W. Ma, Boundedness and unboundedness of solutions for asymmetric oscillators at resonance,, Preprint., ().
|
[13] |
Z. H. Wang, Coexistence of unbounded solutions and periodic solutions of Liénard equations with asymmetric nonlinearities at resonance, Sci. China Ser. A, 50 (2007), 1205-1216.
doi: 10.1007/s11425-007-0070-z. |
[14] |
Z. H. Wang, Irrational rotation numbers and unboundedness of solutions of the second order differential equations with asymmetric nonlinearities, Proc. Amer. Math. Soc., 131 (2003), 523-531.
doi: 10.1090/S0002-9939-02-06601-7. |
[1] |
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 |
[2] |
Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219 |
[3] |
José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653 |
[4] |
Dominique Blanchard, Olivier Guibé, Hicham Redwane. Existence and uniqueness of a solution for a class of parabolic equations with two unbounded nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (1) : 197-217. doi: 10.3934/cpaa.2016.15.197 |
[5] |
Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022 |
[6] |
Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure and Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487 |
[7] |
Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385 |
[8] |
Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789 |
[9] |
Zhibo Cheng, Xiaoxiao Cui. Positive periodic solution for generalized Basener-Ross model. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4361-4382. doi: 10.3934/dcdsb.2020101 |
[10] |
Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365 |
[11] |
Gui-Dong Li, Yong-Yong Li, Xiao-Qi Liu, Chun-Lei Tang. A positive solution of asymptotically periodic Choquard equations with locally defined nonlinearities. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1351-1365. doi: 10.3934/cpaa.2020066 |
[12] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[13] |
Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018 |
[14] |
Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230 |
[15] |
Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022 |
[16] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2005-2021. doi: 10.3934/cpaa.2012.11.2005 |
[17] |
Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995 |
[18] |
Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations and Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012 |
[19] |
Wenjie Li, Lihong Huang, Jinchen Ji. Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2639-2664. doi: 10.3934/dcdsb.2020026 |
[20] |
Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]