• Previous Article
    Consensus of discrete-time linear multi-agent systems with observer-type protocols
  • DCDS-B Home
  • This Issue
  • Next Article
    Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme
September  2011, 16(2): 475-488. doi: 10.3934/dcdsb.2011.16.475

Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system

1. 

School of Mathematics, Yunnan Normal University, Kunming 650092, China

2. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China

3. 

College of Mathematics and Information Science, Guangxi University, Nanning 530004, China

4. 

School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China

Received  November 2009 Revised  December 2010 Published  June 2011

A problem of reducing a general three-dimensional (3-D) autonomous quadratic system to a Lorenz-type system is studied. Firstly, under some necessary conditions for preserving the basic qualitative properties of the Lorenz system, the general 3-D autonomous quadratic system is converted to an extended Lorenz-type system (ELTS) which contains a large class of existing chaotic dynamical systems. Secondly, some different canonical forms of the ELTS are obtained with the aid of various nonsingular linear transformations and normalization techniques. Thirdly, the conjugate systems of the ELTS are defined and discussed. Finally, a sufficient condition for the nonexistence of chaos in such ELTS is derived.
Citation: Cuncai Hua, Guanrong Chen, Qunhong Li, Juhong Ge. Converting a general 3-D autonomous quadratic system to an extended Lorenz-type system. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 475-488. doi: 10.3934/dcdsb.2011.16.475
References:
[1]

E. N. Lorenz, Deterministic non periodic flow, J. Atmos. Sci., 20 (1963), 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[2]

O. E. Rössler, An equation for continuous chaos, Phys. Lett. A., 57 (1976), 397-398. doi: 10.1016/0375-9601(76)90101-8.

[3]

L. O. Chua, M. Komuro and T. Matsumoto, The double scroll family. Part I: Rigorous proof of chaos, IEEE Trans. Circ. Syst., 33 (1986), 1072-1096. doi: 10.1109/TCS.1986.1085869.

[4]

G. R. Chen and J. H. Lü, "Dynamical Analysis, Control and Synchronizations for the Family of Lorenz System," Science Press, Beijing, 2003.

[5]

A. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537.

[6]

A. Neishtadtand, C. Sim, D. Treschev and A. Vasiliev, Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621-650. doi: 10.3934/dcdsb.2008.10.621.

[7]

H. W. Broer, C. Sim and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905. doi: 10.3934/dcdsb.2010.14.871.

[8]

G. R. Chen and D. Lai, Feedback control of Lyapunov exponents from discrete-time dynamical systems, Int. J. Bifurcation and Chaos, 6 (1996), 1341-1349. doi: 10.1142/S021812749600076X.

[9]

G. R. Chen and D. Lai, Feedback anticontrol discrete of chaos, Int. J. Bifurcation and Chaos, 8 (1998), 1585-1590. doi: 10.1142/S0218127498001236.

[10]

G. R. Chen, Chaotification via feedback: the discrete case, in "Chaos and Bifurcation Control: Theorey and Applications, Part I: Chaos Control" (eds. G. Chen, X. Yu and D. Hill), Springer-Verlag, Heidelberg, (1971).

[11]

G. R. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurcation and Chaos, 9 (1999), 1465-1466.

[12]

J. H. Lü and G. R. Chen, A new chaotic attractor coined, Int. J. Bifurcation and Chaos, 3 (2002), 659-661.

[13]

J. H. Lü, G. R. Chen, D. Chen and S.Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcation and Chaos, 12 (2002), 2917-2926. doi: 10.1142/S021812740200631X.

[14]

W. B. Liu and G. R. Chen, A new chaotic system and its generation, Int. J. Bifurcation and Chaos, 13 (2003), 261-267. doi: 10.1142/S0218127403006509.

[15]

W. B. Liu and G. R. Chen, Can a three-dimensional smooth autonomous quadratic chaotic system generate single four-scroll attractors, Int. J. Bifurcation and Chaos, 14 (2004), 1395-1403. doi: 10.1142/S0218127404009880.

[16]

A. Vaně ček and S. Čelikovský, "Control Systems: From Linear Analysis to Synthesis of Chaos," Prentice-Hall, London, 1996.

[17]

S. Čelikovský and G. R. Chen, Hyperbolic-type generalized Lorenz system and its canonical form, In "Proceedings of the 15th Triennial World Congress of IFAC" (CD Rom), Barcelona, Spain, 2002.

[18]

S. Čelikovský and G. R. Chen, On a generalized Lorenz canonical form of chaotic system, Int. J. Bifurcation and Chaos, 12 (2002), 1789-1812. doi: 10.1142/S0218127402005467.

[19]

S. Čelikovský and G. Chen, On the generalized Lorenz canonical form, Chaos, Solitons and Fractal, 26 (2005), 1271-1276. doi: 10.1016/j.chaos.2005.02.040.

[20]

A. L. Shil'nikov, On bifurcations of the Lorenz attractor in the Shimizu-Morioka model, Physica D, 62 (1993), 338-346. doi: 10.1016/0167-2789(93)90292-9.

[21]

Q. G. Yang, G. R. Chen and T. S. Zhou, A unified Lorenz-type system and its canonical form, Int. J. Bifurcation and Chaos, 14 (2006), 2855-2871. doi: 10.1142/S0218127406016501.

[22]

J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647-R650. doi: 10.1103/PhysRevE.50.R647.

[23]

C. P. Silva, Sil'nikov theorem-a tutorial, IEEE Trans. Circ. Syst.-I, 40 (1993), 675-682.

show all references

References:
[1]

E. N. Lorenz, Deterministic non periodic flow, J. Atmos. Sci., 20 (1963), 130-141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[2]

O. E. Rössler, An equation for continuous chaos, Phys. Lett. A., 57 (1976), 397-398. doi: 10.1016/0375-9601(76)90101-8.

[3]

L. O. Chua, M. Komuro and T. Matsumoto, The double scroll family. Part I: Rigorous proof of chaos, IEEE Trans. Circ. Syst., 33 (1986), 1072-1096. doi: 10.1109/TCS.1986.1085869.

[4]

G. R. Chen and J. H. Lü, "Dynamical Analysis, Control and Synchronizations for the Family of Lorenz System," Science Press, Beijing, 2003.

[5]

A. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537.

[6]

A. Neishtadtand, C. Sim, D. Treschev and A. Vasiliev, Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 621-650. doi: 10.3934/dcdsb.2008.10.621.

[7]

H. W. Broer, C. Sim and R. Vitolo, Chaos and quasi-periodicity in diffeomorphisms of the solid torus, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 871-905. doi: 10.3934/dcdsb.2010.14.871.

[8]

G. R. Chen and D. Lai, Feedback control of Lyapunov exponents from discrete-time dynamical systems, Int. J. Bifurcation and Chaos, 6 (1996), 1341-1349. doi: 10.1142/S021812749600076X.

[9]

G. R. Chen and D. Lai, Feedback anticontrol discrete of chaos, Int. J. Bifurcation and Chaos, 8 (1998), 1585-1590. doi: 10.1142/S0218127498001236.

[10]

G. R. Chen, Chaotification via feedback: the discrete case, in "Chaos and Bifurcation Control: Theorey and Applications, Part I: Chaos Control" (eds. G. Chen, X. Yu and D. Hill), Springer-Verlag, Heidelberg, (1971).

[11]

G. R. Chen and T. Ueta, Yet another chaotic attractor, Int. J. Bifurcation and Chaos, 9 (1999), 1465-1466.

[12]

J. H. Lü and G. R. Chen, A new chaotic attractor coined, Int. J. Bifurcation and Chaos, 3 (2002), 659-661.

[13]

J. H. Lü, G. R. Chen, D. Chen and S.Celikovsky, Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcation and Chaos, 12 (2002), 2917-2926. doi: 10.1142/S021812740200631X.

[14]

W. B. Liu and G. R. Chen, A new chaotic system and its generation, Int. J. Bifurcation and Chaos, 13 (2003), 261-267. doi: 10.1142/S0218127403006509.

[15]

W. B. Liu and G. R. Chen, Can a three-dimensional smooth autonomous quadratic chaotic system generate single four-scroll attractors, Int. J. Bifurcation and Chaos, 14 (2004), 1395-1403. doi: 10.1142/S0218127404009880.

[16]

A. Vaně ček and S. Čelikovský, "Control Systems: From Linear Analysis to Synthesis of Chaos," Prentice-Hall, London, 1996.

[17]

S. Čelikovský and G. R. Chen, Hyperbolic-type generalized Lorenz system and its canonical form, In "Proceedings of the 15th Triennial World Congress of IFAC" (CD Rom), Barcelona, Spain, 2002.

[18]

S. Čelikovský and G. R. Chen, On a generalized Lorenz canonical form of chaotic system, Int. J. Bifurcation and Chaos, 12 (2002), 1789-1812. doi: 10.1142/S0218127402005467.

[19]

S. Čelikovský and G. Chen, On the generalized Lorenz canonical form, Chaos, Solitons and Fractal, 26 (2005), 1271-1276. doi: 10.1016/j.chaos.2005.02.040.

[20]

A. L. Shil'nikov, On bifurcations of the Lorenz attractor in the Shimizu-Morioka model, Physica D, 62 (1993), 338-346. doi: 10.1016/0167-2789(93)90292-9.

[21]

Q. G. Yang, G. R. Chen and T. S. Zhou, A unified Lorenz-type system and its canonical form, Int. J. Bifurcation and Chaos, 14 (2006), 2855-2871. doi: 10.1142/S0218127406016501.

[22]

J. C. Sprott, Some simple chaotic flows, Phys. Rev. E., 50 (1994), R647-R650. doi: 10.1103/PhysRevE.50.R647.

[23]

C. P. Silva, Sil'nikov theorem-a tutorial, IEEE Trans. Circ. Syst.-I, 40 (1993), 675-682.

[1]

Brigita Ferčec, Valery G. Romanovski, Yilei Tang, Ling Zhang. Integrability and bifurcation of a three-dimensional circuit differential system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4573-4588. doi: 10.3934/dcdsb.2021243

[2]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[3]

Haijun Wang, Fumin Zhang. Bifurcations, ultimate boundedness and singular orbits in a unified hyperchaotic Lorenz-type system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1791-1820. doi: 10.3934/dcdsb.2020003

[4]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[5]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[6]

Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563

[7]

Nouressadat Touafek, Durhasan Turgut Tollu, Youssouf Akrour. On a general homogeneous three-dimensional system of difference equations. Electronic Research Archive, 2021, 29 (5) : 2841-2876. doi: 10.3934/era.2021017

[8]

Barbara Arcet, Valery G. Romanovski. Integrability and linearizability of symmetric three-dimensional quadratic systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022104

[9]

María Anguiano, Tomás Caraballo. Asymptotic behaviour of a non-autonomous Lorenz-84 system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3901-3920. doi: 10.3934/dcds.2014.34.3901

[10]

Dan Li, Chunlai Mu, Pan Zheng, Ke Lin. Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 831-849. doi: 10.3934/dcdsb.2018209

[11]

Leo Howden, Donald Giddings, Henry Power, Michael Vloeberghs. Three-dimensional cerebrospinal fluid flow within the human central nervous system. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 957-969. doi: 10.3934/dcdsb.2011.15.957

[12]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure and Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

[13]

Ling Liu, Jiashan Zheng, Gui Bao. Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3437-3460. doi: 10.3934/dcdsb.2020068

[14]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[15]

Myoungjean Bae, Hyangdong Park. Three-dimensional supersonic flows of Euler-Poisson system for potential flow. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2421-2440. doi: 10.3934/cpaa.2021079

[16]

Pengmei Zhang, Jiashan Zheng. Boundedness and stabilization of a three-dimensional parabolic-elliptic Keller-Segel-Stokes system. Discrete and Continuous Dynamical Systems, 2022, 42 (8) : 4095-4125. doi: 10.3934/dcds.2022047

[17]

Xianmin Xu. Analysis for wetting on rough surfaces by a three-dimensional phase field model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2839-2850. doi: 10.3934/dcdsb.2016075

[18]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[19]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[20]

Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]