September  2011, 16(2): 607-621. doi: 10.3934/dcdsb.2011.16.607

Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking

1. 

Department of Dynamics and Control, Beihang University, Beijing 100191, China

2. 

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. 

Department of Electronic Engineering, City University of Hong Kong, Hong Kong

Received  December 2009 Revised  September 2010 Published  June 2011

We study the evolution of spatiotemporal dynamics and synchronization transition on small-world Hodgkin-Huxley (HH) neuronal networks that are characterized with channel noises, ion channel blocking and information transmission delays. In particular, we examine the effects of delay on spatiotemporal dynamics over neuronal networks when channel blocking of potassium or sodium is involved. We show that small delays can detriment synchronization in the network due to a dynamic clustering anti-phase synchronization transition. We also show that regions of irregular and regular wave propagations related to synchronization transitions appear intermittently as the delay increases, and the delay-induced synchronization transitions manifest as well-expressed minima in the measure for spatial synchrony. In addition, we show that the fraction of sodium or potassium channels can play a key role in dynamics of neuronal networks. Furthermore, We found that the fraction of sodium and potassium channels has different impacts on spatiotemporal dynamics of neuronal networks, respectively. Our results thus provide insights that could facilitate the understanding of the joint impact of ion channel blocking and information transmission delays on the dynamical behaviors of realistic neuronal networks.
Citation: Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607
References:
[1]

O. Sporns and J. C. Honey, Small world inside big brains, PNAS, 51 (2006), 19219-19220. doi: 10.1073/pnas.0609523103.

[2]

R. S. Cajal, "Histology of the Nervous System of Man and Vertebrates," Oxford Univ. Press, New York, 1995.

[3]

W. L. Swanson, "Brain Architecture," Oxford Univ. Press, New York, 2003.

[4]

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature, 10 (2009), 186-198.

[5]

O. Sporns, D. Chialvo, M. Kaiser and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci., 8 (2004), 418-425. doi: 10.1016/j.tics.2004.07.008.

[6]

S. D. Bassett and T. E. Bullmore, Small world brain networks, Trends Cogn. Sci., 12 (2006), 512-523.

[7]

C. J. Reijneveld, S. C. Ponten, H. W. Berendse and J. C. Stam, The application of graph theoretical analysis to complex networks in the brain, Clin. Neurophysiol., 118 (2007), 2317-2331. doi: 10.1016/j.clinph.2007.08.010.

[8]

H. D. I. Abarbanel, M. I. Rabinovich, A. I. Selverston, M. V. Bazhenov, R. Huerta, M. M. Suschchik and L. L. Rubchinskii, Synchronisation in neural networks, Phys. Usp., 39 (1996), 337-362. doi: 10.1070/PU1996v039n04ABEH000141.

[9]

M. I. Rabinovich, P. Varona, A. I. Selverston and H. D. Abarbanel, Dynamical Principles in Neuroscience, Reviews of Modern Physics, 78 (2006), 1213-1265. doi: 10.1103/RevModPhys.78.1213.

[10]

C. Hauptmann, A. Gail and F. Giannakopoulos, Intermittent burst synchronization in neural networks, Computational Methods in Neural Modeling, 2686 (2003), 46-53. doi: 10.1007/3-540-44868-3_7.

[11]

C. Zhou, J. Kurths and B. Hu, Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise, Phys. Rev. Lett., 87 (2001), 098101. doi: 10.1103/PhysRevLett.87.098101.

[12]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences," Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.

[13]

Q. Y. Wang, Z. S. Duan, L. Huang, G. R. Chen and Q. S. Lu, Pattern formation and firing synchronization in networks of map neurons, New J. Phys, 9 (2007), 1-11. doi: 10.1088/1367-2630/9/10/383.

[14]

O. Kwon and H.-T. Moon, Coherence resonance in small-world networks of excitable cells, Phys. Lett. A, 298 (2002), 319-324. doi: 10.1016/S0375-9601(02)00575-3.

[15]

Q. Y. Wang, Z. S. Duan, M. Perc and G. R. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett., 83 (2008), 50008. doi: 10.1209/0295-5075/83/50008.

[16]

G. Tanakaa, B. Ibarz, M. A. F. Sanjuan and K. Aihara, Synchronization and propagation of bursts in networks of coupled map neurons, Chaos, 16 (2006), 013113. doi: 10.1063/1.2148387.

[17]

Q. Y. Wang, Q. S. Lu and G. R. Chen, Ordered bursting synchronization and complex wave propagation in a ring neuronal network, Physica A, 374 (2007), 869-878. doi: 10.1016/j.physa.2006.08.062.

[18]

C. S. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag and J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks, Phys. Rev. Lett., 97 (2006), 238103. doi: 10.1103/PhysRevLett.97.238103.

[19]

H. Hill, "Ionic Channels of Excitable Membranes," 3rd edition, Sinauer Associates, Sundrland, MA, 2001.

[20]

Y. B. Gong, Y. H. Hao and Y. H. Xie, Channel blocking-optimized spiking activity of Hodgkin-Huxley neurons on random networks, Physica A, 389 (2010), 349-357. doi: 10.1016/j.physa.2009.09.033.

[21]

M. Ozer, M. Perc and M. Uzuntarl, Controlling the spontaneous spiking regularity via channel blockinging on Newman-Watts networks of Hodgkin-Huxley neurons, Europhys. Lett., 86 (2009), 40008. doi: 10.1209/0295-5075/86/40008.

[22]

Q. Y. Wang and Q. S. Lu, Time Delay-Enhanced Synchronization and Regularization in Two Coupled Chaotic Neurons, Chin. Phys. Lett., 3 (2005), 543-546.

[23]

E. Rossoni, Y. H. Chen, M. Z. Ding and J. F. Feng, Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling, Phys. Rev. E, 71 (2005), 061904. doi: 10.1103/PhysRevE.71.061904.

[24]

A. S. Landsman and I. B. Schwartz, Synchronized dynamics of cortical neurons with time-delay feedback, Nonlinear Biomedical Physics, 1 (2007), 1-9. doi: 10.1186/1753-4631-1-2.

[25]

S. Q. Ma, Z. S. Feng and Q. S. Lu, A two-parameter geometrical criteria for delay differential equations, Discrete and Continuous Dynamical Systems-Series B, 9 (2008), 397-413.

[26]

F. K. Wu and Y. Z. Hu, Stochastic Lotka-Volterra system with unbounded distributed delay, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 275-288.

[27]

Q. Y. Wang, M. Perc, Z. S. Duan and G. R. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80 (2009), 026206. doi: 10.1103/PhysRevE.80.026206.

[28]

A. L. Hodgkin and A. F. Huxley, Quantitative description of membrane and its application to conduction and excitation in nerve, J Physiol, 117 (1952), 500-544.

[29]

S. T. Wang, F. Liu, W. Wang and Y. G. Yu, Impact of spatially correlated noise on neuronal firing, Phys. Rev. E., 69 (2004), 011909. doi: 10.1103/PhysRevE.69.011909.

[30]

Y. B. Gong, M. S. Wang, Z. H. Hou and H. W. Xin, Optimal Spike Coherence and Synchronization on Complex Hodgkin-Huxley Neuron Networks, Chem. Phys. Chem., 6 (2005), 1042-1047. doi: 10.1002/cphc.200500051.

[31]

Y. B. Gong, B. Xu, Q. Xu, C. L. Yang, T. Q. Ren, Z. H. Hou and H. W Xin, Ordering spatiotemporal chaos in complex thermosensitive neuron networks, Phys. Rev. E, 73 (2006), 046137. doi: 10.1103/PhysRevE.73.046137.

[32]

Z. Gao, B. Hu and G. Hu, Stochastic resonance of small-world networks, Phys. Rev. E., 65 (2001), 016209. doi: 10.1103/PhysRevE.65.016209.

show all references

References:
[1]

O. Sporns and J. C. Honey, Small world inside big brains, PNAS, 51 (2006), 19219-19220. doi: 10.1073/pnas.0609523103.

[2]

R. S. Cajal, "Histology of the Nervous System of Man and Vertebrates," Oxford Univ. Press, New York, 1995.

[3]

W. L. Swanson, "Brain Architecture," Oxford Univ. Press, New York, 2003.

[4]

E. Bullmore and O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature, 10 (2009), 186-198.

[5]

O. Sporns, D. Chialvo, M. Kaiser and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci., 8 (2004), 418-425. doi: 10.1016/j.tics.2004.07.008.

[6]

S. D. Bassett and T. E. Bullmore, Small world brain networks, Trends Cogn. Sci., 12 (2006), 512-523.

[7]

C. J. Reijneveld, S. C. Ponten, H. W. Berendse and J. C. Stam, The application of graph theoretical analysis to complex networks in the brain, Clin. Neurophysiol., 118 (2007), 2317-2331. doi: 10.1016/j.clinph.2007.08.010.

[8]

H. D. I. Abarbanel, M. I. Rabinovich, A. I. Selverston, M. V. Bazhenov, R. Huerta, M. M. Suschchik and L. L. Rubchinskii, Synchronisation in neural networks, Phys. Usp., 39 (1996), 337-362. doi: 10.1070/PU1996v039n04ABEH000141.

[9]

M. I. Rabinovich, P. Varona, A. I. Selverston and H. D. Abarbanel, Dynamical Principles in Neuroscience, Reviews of Modern Physics, 78 (2006), 1213-1265. doi: 10.1103/RevModPhys.78.1213.

[10]

C. Hauptmann, A. Gail and F. Giannakopoulos, Intermittent burst synchronization in neural networks, Computational Methods in Neural Modeling, 2686 (2003), 46-53. doi: 10.1007/3-540-44868-3_7.

[11]

C. Zhou, J. Kurths and B. Hu, Array-enhanced coherence resonance: nontrivial effects of heterogeneity and spatial independence of noise, Phys. Rev. Lett., 87 (2001), 098101. doi: 10.1103/PhysRevLett.87.098101.

[12]

A. Pikovsky, M. Rosenblum and J. Kurths, "Synchronization: A Universal Concept in Nonlinear Sciences," Cambridge University Press, Cambridge, 2001. doi: 10.1017/CBO9780511755743.

[13]

Q. Y. Wang, Z. S. Duan, L. Huang, G. R. Chen and Q. S. Lu, Pattern formation and firing synchronization in networks of map neurons, New J. Phys, 9 (2007), 1-11. doi: 10.1088/1367-2630/9/10/383.

[14]

O. Kwon and H.-T. Moon, Coherence resonance in small-world networks of excitable cells, Phys. Lett. A, 298 (2002), 319-324. doi: 10.1016/S0375-9601(02)00575-3.

[15]

Q. Y. Wang, Z. S. Duan, M. Perc and G. R. Chen, Synchronization transitions on small-world neuronal networks: Effects of information transmission delay and rewiring probability, Europhys. Lett., 83 (2008), 50008. doi: 10.1209/0295-5075/83/50008.

[16]

G. Tanakaa, B. Ibarz, M. A. F. Sanjuan and K. Aihara, Synchronization and propagation of bursts in networks of coupled map neurons, Chaos, 16 (2006), 013113. doi: 10.1063/1.2148387.

[17]

Q. Y. Wang, Q. S. Lu and G. R. Chen, Ordered bursting synchronization and complex wave propagation in a ring neuronal network, Physica A, 374 (2007), 869-878. doi: 10.1016/j.physa.2006.08.062.

[18]

C. S. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag and J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks, Phys. Rev. Lett., 97 (2006), 238103. doi: 10.1103/PhysRevLett.97.238103.

[19]

H. Hill, "Ionic Channels of Excitable Membranes," 3rd edition, Sinauer Associates, Sundrland, MA, 2001.

[20]

Y. B. Gong, Y. H. Hao and Y. H. Xie, Channel blocking-optimized spiking activity of Hodgkin-Huxley neurons on random networks, Physica A, 389 (2010), 349-357. doi: 10.1016/j.physa.2009.09.033.

[21]

M. Ozer, M. Perc and M. Uzuntarl, Controlling the spontaneous spiking regularity via channel blockinging on Newman-Watts networks of Hodgkin-Huxley neurons, Europhys. Lett., 86 (2009), 40008. doi: 10.1209/0295-5075/86/40008.

[22]

Q. Y. Wang and Q. S. Lu, Time Delay-Enhanced Synchronization and Regularization in Two Coupled Chaotic Neurons, Chin. Phys. Lett., 3 (2005), 543-546.

[23]

E. Rossoni, Y. H. Chen, M. Z. Ding and J. F. Feng, Stability of synchronous oscillations in a system of Hodgkin-Huxley neurons with delayed diffusive and pulsed coupling, Phys. Rev. E, 71 (2005), 061904. doi: 10.1103/PhysRevE.71.061904.

[24]

A. S. Landsman and I. B. Schwartz, Synchronized dynamics of cortical neurons with time-delay feedback, Nonlinear Biomedical Physics, 1 (2007), 1-9. doi: 10.1186/1753-4631-1-2.

[25]

S. Q. Ma, Z. S. Feng and Q. S. Lu, A two-parameter geometrical criteria for delay differential equations, Discrete and Continuous Dynamical Systems-Series B, 9 (2008), 397-413.

[26]

F. K. Wu and Y. Z. Hu, Stochastic Lotka-Volterra system with unbounded distributed delay, Discrete and Continuous Dynamical Systems-Series B, 14 (2010), 275-288.

[27]

Q. Y. Wang, M. Perc, Z. S. Duan and G. R. Chen, Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys. Rev. E, 80 (2009), 026206. doi: 10.1103/PhysRevE.80.026206.

[28]

A. L. Hodgkin and A. F. Huxley, Quantitative description of membrane and its application to conduction and excitation in nerve, J Physiol, 117 (1952), 500-544.

[29]

S. T. Wang, F. Liu, W. Wang and Y. G. Yu, Impact of spatially correlated noise on neuronal firing, Phys. Rev. E., 69 (2004), 011909. doi: 10.1103/PhysRevE.69.011909.

[30]

Y. B. Gong, M. S. Wang, Z. H. Hou and H. W. Xin, Optimal Spike Coherence and Synchronization on Complex Hodgkin-Huxley Neuron Networks, Chem. Phys. Chem., 6 (2005), 1042-1047. doi: 10.1002/cphc.200500051.

[31]

Y. B. Gong, B. Xu, Q. Xu, C. L. Yang, T. Q. Ren, Z. H. Hou and H. W Xin, Ordering spatiotemporal chaos in complex thermosensitive neuron networks, Phys. Rev. E, 73 (2006), 046137. doi: 10.1103/PhysRevE.73.046137.

[32]

Z. Gao, B. Hu and G. Hu, Stochastic resonance of small-world networks, Phys. Rev. E., 65 (2001), 016209. doi: 10.1103/PhysRevE.65.016209.

[1]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[2]

Ling Zhang, Xiaoqi Sun. Stability analysis of time-varying delay neural network for convex quadratic programming with equality constraints and inequality constraints. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022035

[3]

Hiroaki Uchida, Yuya Oishi, Toshimichi Saito. A simple digital spiking neural network: Synchronization and spike-train approximation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1479-1494. doi: 10.3934/dcdss.2020374

[4]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[5]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[6]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[7]

Ruoxia Li, Huaiqin Wu, Xiaowei Zhang, Rong Yao. Adaptive projective synchronization of memristive neural networks with time-varying delays and stochastic perturbation. Mathematical Control and Related Fields, 2015, 5 (4) : 827-844. doi: 10.3934/mcrf.2015.5.827

[8]

Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041

[9]

Juan Cao, Fengli Ren, Dacheng Zhou. Asymptotic and finite-time cluster synchronization of neural networks via two different controllers. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022005

[10]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, 2021, 29 (5) : 2973-2985. doi: 10.3934/era.2021022

[11]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[12]

Juanjuan Huang, Yan Zhou, Xuerong Shi, Zuolei Wang. A single finite-time synchronization scheme of time-delay chaotic system with external periodic disturbance. Mathematical Foundations of Computing, 2019, 2 (4) : 333-346. doi: 10.3934/mfc.2019021

[13]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6047-6056. doi: 10.3934/dcdsb.2021001

[14]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure and Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655

[15]

Stefano Fasani, Sergio Rinaldi. Local stabilization and network synchronization: The case of stationary regimes. Mathematical Biosciences & Engineering, 2010, 7 (3) : 623-639. doi: 10.3934/mbe.2010.7.623

[16]

Ndolane Sene. Fractional input stability and its application to neural network. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 853-865. doi: 10.3934/dcdss.2020049

[17]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[18]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[19]

Shyan-Shiou Chen, Chih-Wen Shih. Asymptotic behaviors in a transiently chaotic neural network. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 805-826. doi: 10.3934/dcds.2004.10.805

[20]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]