\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive solutions of $p$-Laplacian equations with nonlinear boundary condition

Abstract Related Papers Cited by
  • In this paper we study the following problem $$-\triangle_{p}u+|u|^{p-2}u=f(x,u) $$ in a bounded smooth domain $\Omega \subset {\bf R}^{N}$ with a nonlinear boundary value condition $|\nabla u|^{p-2}\frac{\partial u}{\partial\nu}=g(x,u)$. Results on the existence of positive solutions are obtained by the sub-supersolution method and the Mountain Pass Lemma.
    Mathematics Subject Classification: Primary: 35J65, 35J50; Secondary: 35J55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Amster, M. C. Mariani and O. Mendez, Nonlinear boundary conditions for elliptic equations, Electronic Journal of Differential Equations, 144 (2005), 1-8.

    [2]

    J. F. Bonder and J. D. Rossi, Existence Results for the p-Laplacian with nonlinear boundary conditions, J. M. A. A., 263 (2001), 195-223.

    [3]

    J. F. Bonder, J. P. Pinasco and J. D. Rossi, Existence results for a Hamiltonian elliptic systems with nonlinear boundary conditions, Electronic Journal of Differential Equations, 40 (1999), 1-15.

    [4]

    J. F. Bonder and J. D. Rossi, Existence for an elliptic system with nonlinear boundary conditions via fixed point methods, Adv.Differential Equations, 6 (2001), 1-20.

    [5]

    M. Chipot, I. Shafrir and M. Fila, On the solutions to some elliptic equations with nonlinear boundary conditions, Adv. Differential Equations, 1 (1996), 91-110.

    [6]

    M. Chipot, M. Chlebik, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $R$N+with a nonlinear boundary condition, J. Math. Anal. Appl., 223 (1998), 429-471.doi: 10.1006/jmaa.1998.5958.

    [7]

    P. Drabek, Nonlinear eigenvalue problems for the p.Laplacian in $R$N, Math. Nachr., 173 (1995), 131-139.doi: 10.1002/mana.19951730109.

    [8]

    J. I. Diaz, Nonlinear partial differential equations and free boundaries, Elliptic equations. Pitman Adv. Publ., Boston MA, 323 (1985), 44-95.

    [9]

    P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Reg. conf. ser. Math, 65 (1986), 1-100.

    [10]

    C. Flores and M. del Pino, Asymptotic behavior of best constants and extremals for trace embeddings in expanding domains, Comm. Partial Differential Equations, 26 (2001), 2189-2210.doi: 10.1081/PDE-100107818.

    [11]

    Z. M. Guo, Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal., 18 (1992), 957-971.doi: 10.1016/0362-546X(92)90132-X.

    [12]

    B. Hu, Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differential Integral Equations, 7 (1994), 301-313.

    [13]

    Y. ILYasov and T. Runst, Positive solutions for indefinite inhomogeneous Neumann elliptic problems, Electronic Journal of Differential Equations, 57 (2003), 1-21.

    [14]

    D. A. Kandilakis and A. N. Lyberopoulos, Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearities on unbounded domains, J. Differential Equations, 230 (2006), 337-361.doi: 10.1016/j.jde.2006.03.008.

    [15]

    E. Montefusco and V. Radulescu, Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear Differ. Equ. Appl., 8 (2001), 481-497.doi: 10.1007/PL00001460.

    [16]

    K. Pflüger, Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electronic Journal of Differential Equations, 10 (1998), 1-13.

    [17]

    R. Filippucci, P. Pucci and v. Rădulescu, Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations, 33 (2008), 706-717.doi: 10.1080/03605300701518208.

    [18]

    X. C. Song, W. H. Wang and P. H. Zhao, Positive solutions of elliptic equations with nonlinear boundary conditions, Nonlinear Analysis, 70 (2009), 328-334.doi: 10.1016/j.na.2007.12.003.

    [19]

    S. Z. Song and C. L. Tang, Resonance problems for the p-Laplacian with a nonlinear boundary condition, Nonlinear Analysis, 64 (2006), 2007-2021.doi: 10.1016/j.na.2005.07.035.

    [20]

    S. Terraccini, Symmetry properties of positive solutions to some elliptic equations with nonlinear boundary conditions, Differential Integral Equations, 8 (1995), 1911-1922.

    [21]

    J. H. Zhao and P. H. Zhao, Infinitely many weak solutions for a p-Laplacian equation with nonlinear boundary conditions, EJDE, 90 (2007), 1-14.

    [22]

    J. H. Zhao and P. H. Zhao, Existence of infinitely many weak solutions for the p-Laplacian with nonlinear boundary conditions, Nonlinear Analysis, 69 (2008), 1343-1355.doi: 10.1016/j.na.2007.06.036.

    [23]

    Z. M. Guo and J. R. L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh, 124A (1994), 189-198.

    [24]

    Z. M. Guo, On the number of positive solutions for quasilinear elliptic eigenvalue problems, Nonlinear Analysis, 27 (1996), 229-247.doi: 10.1016/0362-546X(94)00352-I.

    [25]

    D. D. Hai, Positive solutions of quasilinear boundary value problems, J. Math.Anal. Appl., 217 (1998), 672-686.doi: 10.1006/jmaa.1997.5762.

    [26]

    B. J. Xuan and Z. C. Chen, Solvability of singular quasilinear elliptic equation, Chinese Ann of Math., 20A (1999), 117-128.

    [27]

    Z. D. Yang and Q. S. Lu, Existence and multipicity of positive entire solutions for a class of quasilinear elliptic equation, Journal Beijing University of Aeronautics and Astronautics, 27 (2001), 217-220.

    [28]

    Z. D. Yang, Existence of positive bounded entire solutions for quasilinear elliptic equations, Appl. Math. Comput., 156 (2004), 743-754.doi: 10.1016/j.amc.2003.06.024.

    [29]

    M. Guedda and L. Veron, Local and global properties of solutions of quasilinear elliptic equations, J. Diff. Equs., 76 (1988), 159-189.doi: 10.1016/0022-0396(88)90068-X.

    [30]

    Z. D. Yang, Existence of positive entire solutions for singular and non-singular quasi-linear elliptic equation, J. Comm. Appl. Math., 197 (2006), 355-364.doi: 10.1016/j.cam.2005.08.027.

    [31]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.doi: 10.1007/BF01221125.

    [32]

    S. Kichenassamy and J. Smoller, On the existence of radial solutions of quasilinear elliptic equations, Nonlinearity, 3 (1990), 677-694.doi: 10.1088/0951-7715/3/3/008.

    [33]

    A. Mohammed, Positive solutions of the $p$-Laplace equation with singular nonlinearity, J. Math. Anal. Appl., 352 (2009), 234-245.doi: 10.1016/j.jmaa.2008.06.018.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(318) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return