Citation: |
[1] |
T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cell, Biophys. J., 42 (1983), 181-195.doi: 10.1016/S0006-3495(83)84384-7. |
[2] |
L. N. Cornelisse, W. J. J. M. Scheenen, W. J. H. Koopman, E. W. Roubos and S. C. A. M. Gielen, Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus Laevis, Neural Comp., 13 (2000), 113-137.doi: 10.1162/089976601300014655. |
[3] |
J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. Rroyal. Soc. Lond. B, 221 (1984), 87-102.doi: 10.1098/rspb.1984.0024. |
[4] |
R. J. Butera, J. Rinzel and J. C. Smith, models respiratory rhythm generation in the pre-Bötzinger complex. I. bursting pacemaker neurons, J. Neurophysiol, 81 (1999), 382-397. |
[5] |
J. Rinzel, A formal classification of bursting mechanisms in excitable systems, Proc. of Inter. Cong. of Math, (1987), 1578-1593. |
[6] |
E. M. Izhikevich, Neural Excitability, Spiking, and Bursting, Int. J. of Bifurcation Chaos, 10 (2000), 1171-1266.doi: 10.1142/S0218127400000840. |
[7] |
R. Bertram, M. J. Butte, T. Kiemel and A. Sherman, Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), 413-439. |
[8] |
A. Sherman, Contributions of modeling to understanding stimulus-secretion coupling in pancreatic $\beta$-cells, Amer. J. Physiol., 271 (1996), E362-E372. |
[9] |
D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, J. Appl. Math., 51 (1991), 1418-1450. |
[10] |
A. Sherman and J. Rinzel, Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proc. Natl. Acad. Sci., 89 (1992), 2471-2474.doi: 10.1073/pnas.89.6.2471. |
[11] |
V. N. Belykh, I. V. Belykh, M. Colding-Jørgensen and E. Mosekilde, Homoclinic bifurcations leading to the emergence of bursting oscillations in cell models, Euro. Phys. J. E, 3 (2000), 205-219.doi: 10.1007/s101890070012. |
[12] |
J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, Handbook of Dynamical Systems, Elsevier Science, 2 (2002), 93-146. |
[13] |
D. Somers and N. Kopell, Rapid synchronization through fast threshold modulation, Biol. Cybern., 68 (1993), 393-407.doi: 10.1007/BF00198772. |
[14] |
M. Dhamala, V. K. Jirsa and M. Ding, Transitions to synchrony in coupled bursting neurons, Phys. Rev. Letters, 2 (2004), 028101.doi: 10.1103/PhysRevLett.92.028101. |
[15] |
J. Rubin, Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters, Phys. Rev. E, 74 (2006), 201917.doi: 10.1103/PhysRevE.74.021917. |
[16] |
T. Bem, Y. L. Feuvre, J. Rinzel and P. Meyrand, Eleltrical coupling induces bistability of rhythms in networks of inhibitory spiking neurons, Euro. J. Neuroscience, 22 (2005), 2661-2668.doi: 10.1111/j.1460-9568.2005.04405.x. |
[17] |
T. J. Lewis and J. Rinzel, Dynamics of spiking neurons connected by both inhibitory and electrical coupling, J. of Comp. Neuroscience, 14 (2003), 283-309.doi: 10.1023/A:1023265027714. |
[18] |
F. G. Kazanci and B. Ermentrout, Pattern formation in an array of oscillators with electrical and chemical coupling, SIAM J. Appl. Math, 67 (2007), 512-529.doi: 10.1137/060661041. |
[19] |
B. Pfeuty, G. Mato, D. Golomb and D. Hansel, The combined effects of inhibitory and electrical synapses in synchrony, Neural Comp., 17 (2005), 633-670.doi: 10.1162/0899766053019917. |
[20] |
H. D. I. Abarbanel, R. Huerta, M. I. Rabinovich, N. F. Rulkov, P. F. Rowat and A. I. Selverston, Synchronized action of synaptically coupled chaotic model neurons, Neural Comp., 8 (1996), 1567-1602.doi: 10.1162/neco.1996.8.8.1567. |
[21] |
J. Su, H. Perez and M. He, Regular bursting emerging from coupled chaotic neurons, Discrete and Continuous Dynamical Systems, supplemental issue (2007), 946-955. |
[22] |
N. F. Rulkov, Regularization of synchronized chaotic bursts, Phys. Rev. Letters, 86 (2001), 183-186.doi: 10.1103/PhysRevLett.86.183. |
[23] |
B. Ermentrout, "Simulating, Analyzing, and Animating Dynamical Systems," SIAM, Philadelphia, 2002.doi: 10.1137/1.9780898718195. |
[24] |
E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. of Diff. Equations, 158 (1999), 48-78.doi: 10.1016/S0022-0396(99)80018-7. |
[25] |
G. S. Medvedev, Reduction of a model of an excitable cell to a one-dimensional map, Physica D, 202 (2005), 37-59.doi: 10.1016/j.physd.2005.01.021. |
[26] |
M. Pedersen and M. Sorensen, The effect of noise on beta-cell burst period, SIAM J. Appl. Math., 67 (2007), 530-542.doi: 10.1137/060655663. |
[27] |
S. Ma, Z. S. Feng and Q. S. Lu, A two-parameter geometrical criteria for delay differential equations, Discrete and Continuous Dynamical Systems-B, 9 (2008), 397-413. |