Citation: |
[1] |
T. Alpcan and T. Basar, Global stability analysis of an end-to-end congestion control scheme for general topology networks with delay, in "Proceedings of the 42nd IEEE Conference on Decision and Control," (2003), 1092-1097. |
[2] |
H. Brunner and S. Maset, Time transformations for delay differential equations, Discrete Contin. Dyn. Syst. Ser A, 25 (2009), 751-775.doi: 10.3934/dcds.2009.25.751. |
[3] |
Z. Chen and P. Yu, Hopf bifurcation control for an Internet congestion model, International Journal of Bifurcation and Chaos, 15 (2005), 2643-2651.doi: 10.1142/S0218127405013587. |
[4] |
Y. Choi, Periodic delay effects on cutting dynamics, Journal of Dynamics and Differential Equations, 17 (2005), 353-389.doi: 10.1007/s10884-005-3145-y. |
[5] |
S. L. Das and A. Chatterjee, Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations, Nonlinear Dynamics, 30 (2002), 323-335.doi: 10.1023/A:1021220117746. |
[6] |
D. W. Ding, J. Zhu, X. S. Luo and Y. L. Liu, Delay induced Hopf bifurcation in a dual model of Internet congestion control algorithm, Nonlinear Analysis: Real World Applications, 10 (2009), 2873-2883.doi: 10.1016/j.nonrwa.2008.09.007. |
[7] |
S. Floyd and V. Jacobson, Random early detection gate-ways for congestion avoidance, IEEE/ACM Transctions on Networks, 1 (1993), 397-413. |
[8] |
D. E. Gilsinn, Estimating critical Hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter, Nonlinear Dynamics, 30 (2002), 103-154.doi: 10.1023/A:1020455821894. |
[9] |
S. T. Guo, G. Feng, X. F. Liao and Q. Liu, Hopf bifurcation control in a congestion control model via dynamic delayed feedback, Chaos, 18 (2008), 043104-1-13.doi: 10.1063/1.2998220. |
[10] |
S. T. Guo, X. F. Liao and C. D. Li, Stability and Hopf bifurcation analysis in a novel congestion control model with communication delay, Nonlinear Analysis: Real World Applications, 9 (2008), 1292-1309.doi: 10.1016/j.nonrwa.2007.03.006. |
[11] |
S. T. Guo, X. F. Liao, Q. Liu and C. D. Li, Necessary and sufficient conditions for Hopf bifurcation in exponential RED algorithm with communication delay, Nonlinear Analysis: Real World Applications, 9 (2008), 1768-1793.doi: 10.1016/j.nonrwa.2007.05.014. |
[12] |
J. Hale, "Theory of Functional Differential Equations," World Publishing Corporation, Beijing, China, 2003. |
[13] |
V. Jacobson, Congestion avoidance and control, ACM SIGCOMM Computer Communication Review, 18 (1988), 314-329.doi: 10.1145/52325.52356. |
[14] |
K. Jiang, X. F. Wang and Y. G. Xi, Bifurcation analysis of an Internet congestion control model, in "Proceedings of ICARCV," (2004), 590-594. |
[15] |
F. P. Kelly, Models for a self-managed Internet, Philos Trans Roy Soc A, 358 (2000), 2335-2348.doi: 10.1098/rsta.2000.0651. |
[16] |
F. P. Kelly, A. Maulloo and D. K. H. Tan, Rate control in communication networks: shadow prices, proportional fairness, and stability, J. Oper. Res. Soc., 49 (1998), 237-252. |
[17] |
S. Kunniyur and R. Srikant, End-to-end congestion control: utility functions, random lossed and ECN marks, IEEE/ACM Transactions on Networking, 7 (2003), 689-702.doi: 10.1109/TNET.2003.818183. |
[18] |
Y. Kuznetsov, "Elements of Applied Bifurcation Theory," 2nd edition, Springer, 1997. |
[19] |
C. G. Li, G. R. Chen, X. F. Liao and J. B. Yu, Hopf bifurcation in an Internet congestion control model, Chaos Solitons & Fractals, 19 (2004), 853-862.doi: 10.1016/S0960-0779(03)00269-8. |
[20] |
S. Liu, T. Basar and R. Srikant, Controlling the Internet: A survey and some new results, in "Proceedings of the 42nd IEEE Conference on Decision and Control," (2003), 3048-3057. |
[21] |
F. Liu, Z. H. Guan and H. O. Wang, Controlling bifurcations and chaos in TCP-UDP-RED, Nonlinear Analysis: Real World Applications, 11 (2010), 1491-1501.doi: 10.1016/j.nonrwa.2009.03.005. |
[22] |
F. Paganini, A global stability result in network flow control, Systems & Control Letters, 46 (2002), 165-172.doi: 10.1016/S0167-6911(02)00123-8. |
[23] |
G. Raina, Local bifurcation analysis of some dual congestion control algorithms, IEEE Transactions on Automatic Control, 50 (2005), 1135-1146.doi: 10.1109/TAC.2005.852566. |
[24] |
G. Raina and O. Heckmann, TCP: Local stability and Hopf bifurcation, Performance Evaluation, 64 (2007), 266-275.doi: 10.1016/j.peva.2006.05.005. |
[25] |
Shigeki Tsuji, Tetsushi Ueta, Hiroshi Kawakami and Kazuyuki Aihara, Bifurcation of burst response in an Amari-Hopfield Neuron pair with a periodic external forces, Electrical Engineering in Japan, 146 (2004), 43-53.doi: 10.1002/eej.10217. |
[26] |
R. Srikant, "The Mathematics of Internet Congestion Control," Birkhäuser, Boston, 2004. |
[27] |
X. F. Wang, G. R. Chen and King-Tim Ko, A stability theorem for Internet congestion control, Systems & Control Letters, 45 (2002), 81-85.doi: 10.1016/S0167-6911(01)00165-7. |
[28] |
Z. F. Wang and T. G. Chu, Delay induced Hopf bifurcation in a simplified network congestion control model, Chaos Solitons & Fractals, 28 (2006), 161-172.doi: 10.1016/j.chaos.2005.05.047. |
[29] |
M. Xiao and J. D. Cao, Delayed feedback-based bifurcation control in an Internet congestion model, J. Math. Anal. Appl., 332 (2007), 1010-1027.doi: 10.1016/j.jmaa.2006.10.062. |
[30] |
J. Xu and K. W. Chung, A perturbation-incremental scheme for studying Hopf bifurcation in delayed differential systems, Science in China Series E, 52 (2009), 698-708.doi: 10.1007/s11431-009-0052-1. |
[31] |
J. Xu, K. W. Chung and C. L. Chan, An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedbacks, SIAM J. Applied Dynamical Sysyems, 6 (2007), 29-60.doi: 10.1137/040614207. |
[32] |
H. Y. Yang and Y. P. Tian, Hopf bifurcation in REM algorithm with communication delay, Chaos, Solitons & Fractals, 25 (2005), 1093-1105.doi: 10.1016/j.chaos.2004.11.085. |
[33] |
H. Y. Yang and S. Y. Zhang, Hopf bifurcation of end-to-end network congestion control algorithm, 2007 IEEE International Conference on Control and Automation, Guangzhou, China, 2007. |