October  2011, 16(3): 703-717. doi: 10.3934/dcdsb.2011.16.703

Almost periodic and asymptotically almost periodic solutions of Liénard equations

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

State University of Moldova, Department of Mathematics and Informatics, A. Mateevich Street 60, MD–2009 Chişinău

Received  July 2010 Revised  November 2010 Published  June 2011

The aim of this paper is to study the almost periodic and asymptotically almost periodic solutions on $(0,+\infty)$ of the Liénard equation

$ x''+f(x)x'+g(x)=F(t), $

where $F: T\to R$ ($ T= R_+$ or $R$) is an almost periodic or asymptotically almost periodic function and $g:(a,b)\to R$ is a strictly decreasing function. We study also this problem for the vectorial Liénard equation.
   We analyze this problem in the framework of general non-autonomous dynamical systems (cocycles). We apply the general results obtained in our early papers [3, 7] to prove the existence of almost periodic (almost automorphic, recurrent, pseudo recurrent) and asymptotically almost periodic (asymptotically almost automorphic, asymptotically recurrent, asymptotically pseudo recurrent) solutions of Liénard equations (both scalar and vectorial).

Citation: Tomás Caraballo, David Cheban. Almost periodic and asymptotically almost periodic solutions of Liénard equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 703-717. doi: 10.3934/dcdsb.2011.16.703
References:
[1]

E. H. Ait Dads, P. Cieutat and L. Lachimi, Structure of the set of bounded solutions and existence of pseudo almost periodic solutions of a Lienard equation, Differential and Integral Equations, 20 (2007), 793-813.

[2]

J. Campos and P. J. Torres P., On the structure of the set of bounded solutions on a periodic Liénard equation, Proc. Amer. Math. Soc., 127 (1999), 1453-1462. doi: 10.1090/S0002-9939-99-05046-7.

[3]

T. Caraballo and D. N. Cheban, Levitan Almost Periodic and Almost Automorphic Solutions of Second-Order Monotone Differential Equations, J. Differential Equations, 251 (2011), 708-727. doi: 10.1016/j.jde.2011.04.021.

[4]

T. Caraballo and D. N. Cheban, On the Structure of the Global Attractor for Non-autonomous Dynamical Systems with Weak Convergence, Communications on Pure and Applied Analysis, (2011), to appear.

[5]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipstive Dynamical Systems," Interdisciplinary Mathematical Sciences 1, River Edge, NJ: World Scientific, 2004, 528pp.

[6]

D. N. Cheban, Levitan Almost Periodic and Almost Automorphic Solutions of $V$-monotone Differential Equations, J. Dynamics and Differential Equations, 20 (2008), 669-697. doi: 10.1007/s10884-008-9101-x.

[7]

D. N. Cheban, "Asymptotically Almost Periodic Solutions of Differential Equations," Hindawi Publishing Corporation, New York, 2009, 203pp.

[8]

P. Cieutat, On the structure of the set of bounded solutions on an almost periodic Liénard equation, Nonlinear Analysis, 58 (2004), 885-898. doi: 10.1016/j.na.2003.12.005.

[9]

P. Cieutat, S. Fatajou and G. M. N'Guerekata, Bounded and almost automorphic solutions of Lineard equation with a singular nonlinearity, EJQTDE, 21 (2008), 1-15.

[10]

M. Frechet, Les Fonctions Asymptotiquement Presque-Periodiques Continues, C. R. Acad. Sci. Paris, 213 (1941), 520-522.

[11]

M. Frechet, Les Fonctions Asymptotiquement Presque-Periodiques, Rev. Sci., 79 (1941), 341-354.

[12]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations," Cambridge Univ. Press, London, 1982.

[13]

P. Martínez-Amores and P. J. Torres, Dynamics of periodic differential equation with a singular nonlinearity of attractive type, J. Math. Anal. Appl., 202 (1996), 1027-1039. doi: 10.1006/jmaa.1996.0358.

[14]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations," Ştiinţa, Chişinău, 1972. (In Russian)

[15]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differential Equations, 11 (1975), 1246-1255.

[16]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations," Ştiinţa, Chişinău, 1985. (In Russian)

[17]

V. V. Zhikov, Monotonicity in the Theory of Almost Periodic Solutions of Non-Linear operator Equations, Mat. Sbornik, 90 (1973), 214-228; English transl., Math. USSR-Sb., 19 (1974), 209-223.

show all references

References:
[1]

E. H. Ait Dads, P. Cieutat and L. Lachimi, Structure of the set of bounded solutions and existence of pseudo almost periodic solutions of a Lienard equation, Differential and Integral Equations, 20 (2007), 793-813.

[2]

J. Campos and P. J. Torres P., On the structure of the set of bounded solutions on a periodic Liénard equation, Proc. Amer. Math. Soc., 127 (1999), 1453-1462. doi: 10.1090/S0002-9939-99-05046-7.

[3]

T. Caraballo and D. N. Cheban, Levitan Almost Periodic and Almost Automorphic Solutions of Second-Order Monotone Differential Equations, J. Differential Equations, 251 (2011), 708-727. doi: 10.1016/j.jde.2011.04.021.

[4]

T. Caraballo and D. N. Cheban, On the Structure of the Global Attractor for Non-autonomous Dynamical Systems with Weak Convergence, Communications on Pure and Applied Analysis, (2011), to appear.

[5]

D. N. Cheban, "Global Attractors of Non-Autonomous Dissipstive Dynamical Systems," Interdisciplinary Mathematical Sciences 1, River Edge, NJ: World Scientific, 2004, 528pp.

[6]

D. N. Cheban, Levitan Almost Periodic and Almost Automorphic Solutions of $V$-monotone Differential Equations, J. Dynamics and Differential Equations, 20 (2008), 669-697. doi: 10.1007/s10884-008-9101-x.

[7]

D. N. Cheban, "Asymptotically Almost Periodic Solutions of Differential Equations," Hindawi Publishing Corporation, New York, 2009, 203pp.

[8]

P. Cieutat, On the structure of the set of bounded solutions on an almost periodic Liénard equation, Nonlinear Analysis, 58 (2004), 885-898. doi: 10.1016/j.na.2003.12.005.

[9]

P. Cieutat, S. Fatajou and G. M. N'Guerekata, Bounded and almost automorphic solutions of Lineard equation with a singular nonlinearity, EJQTDE, 21 (2008), 1-15.

[10]

M. Frechet, Les Fonctions Asymptotiquement Presque-Periodiques Continues, C. R. Acad. Sci. Paris, 213 (1941), 520-522.

[11]

M. Frechet, Les Fonctions Asymptotiquement Presque-Periodiques, Rev. Sci., 79 (1941), 341-354.

[12]

B. M. Levitan and V. V. Zhikov, "Almost Periodic Functions and Differential Equations," Cambridge Univ. Press, London, 1982.

[13]

P. Martínez-Amores and P. J. Torres, Dynamics of periodic differential equation with a singular nonlinearity of attractive type, J. Math. Anal. Appl., 202 (1996), 1027-1039. doi: 10.1006/jmaa.1996.0358.

[14]

B. A. Shcherbakov, "Topologic Dynamics and Poisson Stability of Solutions of Differential Equations," Ştiinţa, Chişinău, 1972. (In Russian)

[15]

B. A. Shcherbakov, The comparability of the motions of dynamical systems with regard to the nature of their recurrence, Differential Equations, 11 (1975), 1246-1255.

[16]

B. A. Shcherbakov, "Poisson Stability of Motions of Dynamical Systems and Solutions of Differential Equations," Ştiinţa, Chişinău, 1985. (In Russian)

[17]

V. V. Zhikov, Monotonicity in the Theory of Almost Periodic Solutions of Non-Linear operator Equations, Mat. Sbornik, 90 (1973), 214-228; English transl., Math. USSR-Sb., 19 (1974), 209-223.

[1]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[2]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

[3]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6425-6462. doi: 10.3934/dcdsb.2021026

[4]

Tomás Caraballo, David Cheban. Almost periodic and almost automorphic solutions of linear differential equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1857-1882. doi: 10.3934/dcds.2013.33.1857

[5]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[6]

Francesca Alessio, Carlo Carminati, Piero Montecchiari. Heteroclinic motions joining almost periodic solutions for a class of Lagrangian systems. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 569-584. doi: 10.3934/dcds.1999.5.569

[7]

Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure and Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687

[8]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[9]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[10]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[11]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[12]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[13]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1241-1255. doi: 10.3934/dcdsb.2019218

[14]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[15]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[16]

P.E. Kloeden. Pitchfork and transcritical bifurcations in systems with homogeneous nonlinearities and an almost periodic time coefficient. Communications on Pure and Applied Analysis, 2004, 3 (2) : 161-173. doi: 10.3934/cpaa.2004.3.161

[17]

Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301

[18]

Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control and Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101

[19]

Denis Pennequin. Existence of almost periodic solutions of discrete time equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 51-60. doi: 10.3934/dcds.2001.7.51

[20]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]